cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A212292 Odd numbers not of the form p^2 + q^2 + r with p, q, and r prime.

Original entry on oeis.org

1, 3, 5, 7, 9, 17, 33, 43, 83, 179, 623, 713, 1019
Offset: 1

Views

Author

Keywords

Comments

The corresponding sequence with the restriction to primes removed is empty.
Wang shows that all but x^{9/20+e} members of this sequence up to x are congruent to 2 mod 3, for any e > 0.
There are no more terms < 10^7. - Donovan Johnson, Jun 27 2012
There are no more terms < 4*10^9. - Jud McCranie, Jun 09 2013
There are no more terms < 10^11. - Giovanni Resta, Jun 09 2013

References

  • Wang Mingqiang, On sums of a prime, and a square of prime, and a k-power of prime, Northeastern Mathematical Journal 18:4 (2002), pp. 283-286.

Crossrefs

Programs

  • PARI
    list(lim)=my(p1=vector(primepi(sqrt(lim-5.5)),i,prime(i)^2), p2=List(), v=List(), u=List([1,3,5,7,9]), t); for(i=1,#p1, for(j=i,#p1,t=p1[i]+p1[j]; if(t>lim, break, listput(p2,t)))); p2=vecsort(Vec(p2),,8); for(i=1,#p2,forprime(p=2,lim-p2[i],listput(v,p2[i]+p))); v=select(n->n%2, vecsort(Vec(v),,8)); for(i=2,#v,forstep(j=v[i-1]+2,v[i]-2,2,listput(u,j))); Vec(u)

A226537 Numbers not of the form p + q^2 + r^3 + s^4 where p, q, r, and s are prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 37, 42, 43, 48, 53, 61, 67, 77, 82, 208
Offset: 1

Views

Author

Jud McCranie, Jun 10 2013

Keywords

Comments

Probably finite.
There are no more terms < 10^11. - Giovanni Resta, Jun 10 2013

Examples

			31 = 3 + 2^2 + 2^3 + 2^4 so 31 is not in the sequence. 32 cannot be written in a similar way so it is in the sequence.
		

Crossrefs

Cf. A226484.

Programs

  • Mathematica
    max = 300; pqrs1234 = Sort[Flatten[Table[Prime[p] + Prime[q]^2 + Prime[r]^3 + Prime[s]^4, {p, PrimePi[max]}, {q, PrimePi[Sqrt[max]]}, {r, PrimePi[max^(1/3)]}, {s, PrimePi[max^(1/4)]}]]]; Complement[Range[max], pqrs1234] (* Alonso del Arte, Nov 24 2013 *)
  • PARI
    is(n)=if(n<30, return(n>0)); forprime(s=2,sqrtnint(n-14,4), my(lr=n-s^4); forprime(r=2,sqrtnint(lr-6,3), my(lq=lr-r^3); forprime(q=2,sqrtint(lq-2), if(isprime(lq-q^2), return(0))))); 1 \\ Charles R Greathouse IV, Nov 13 2018
Showing 1-2 of 2 results.