A226493 Closed walks of length n in K_4 graph.
0, 12, 24, 84, 240, 732, 2184, 6564, 19680, 59052, 177144, 531444, 1594320, 4782972, 14348904, 43046724, 129140160, 387420492, 1162261464, 3486784404, 10460353200, 31381059612, 94143178824, 282429536484, 847288609440, 2541865828332, 7625597484984, 22876792454964
Offset: 1
References
- Mike Krebs and Tony Shaheen, Expander Families and Cayley Graphs, Oxford University Press, Inc. 2011
Links
- K. Böhmová, C. Dalfó, and C. Huemer, On cyclic Kautz digraphs, Preprint 2016.
- Cristina Dalfó, From subKautz digraphs to cyclic Kautz digraphs, arXiv:1709.01882 [math.CO], 2017.
- C. Dalfó, The spectra of subKautz and cyclic Kautz digraphs, Linear Algebra and its Applications, 531 (2017), p. 210-219.
- Carlos I. Perez-Sanchez, The Spectral Action on quivers, arXiv:2401.03705 [math.RT], 2024.
- Index entries for linear recurrences with constant coefficients, signature (2,3).
Programs
-
Mathematica
Table[3 (-1)^k + 3^k, {k, 30}]
-
PARI
a(n) = { 3*(-1)^n + 3^n } \\ Andrew Howroyd, Sep 11 2019
Formula
a(n) = 3*(-1)^n + 3^n = 12*A015518(n-1).
G.f.: 12*x^2 / ( (1+x)*(1-3*x) ). - R. J. Mathar, Jun 29 2013
Comments