A226499 Triangular numbers representable as m * triangular(m).
0, 1, 6, 4851
Offset: 1
Keywords
Examples
6 = 2 * triangular(2). 4851 = 21 * triangular(21).
Crossrefs
Cf. A000217.
Programs
-
Mathematica
TriangularQ[n_] := IntegerQ[Sqrt[1 + 8*n]]; s = Select[Range[0, 10000], TriangularQ[#^2 (# + 1)/2] &]; s^2 (s + 1)/2 (* T. D. Noe, Jun 12 2013 *)
-
Python
def isTriangular(a): sr = 1 << (int.bit_length(int(a)) >> 1) a += a while a < sr*(sr+1): sr>>=1 b = sr>>1 while b: s = sr+b if a >= s*(s+1): sr = s b>>=1 return (a==sr*(sr+1)) for n in range(10000): product = n*n*(n+1)//2 if isTriangular(product): print(product, end=',')