A262242
Triangular numbers representable as 2^x + 2^y.
Original entry on oeis.org
3, 6, 10, 36, 66, 136, 528, 2080, 8256, 32896, 131328, 524800, 2098176, 8390656, 33558528, 134225920, 536887296, 2147516416, 8590000128, 34359869440, 137439215616, 549756338176, 2199024304128, 8796095119360, 35184376283136, 140737496743936, 562949970198528
Offset: 1
A262251
Triangular numbers representable as 2^x + 3^y.
Original entry on oeis.org
a(1) = 3 = 2^1 + 3^0.
a(4) = 91 = 2^6 + 3^3.
-
isok(t) = {for (k=0, logint(t, 2), my(tt = t - 2^k); if (tt, p = valuation(tt, 3); if (tt == 3^p, return(1))););}
lista(nn) = for (n=1, nn, if (isok(t=n*(n+1)/2), print1(t, ", "))); \\ Michel Marcus, Sep 20 2015
-
select(x->ispolygonal(x, 3), setbinop(f, [0..20], [0..20])) \\ Michel Marcus, Mar 10 2021
-
from sympy import integer_nthroot
def auptoexponent(maxexp):
sums = set(2**x + 3**y for x in range(maxexp) for y in range(maxexp))
iroots = set(integer_nthroot(2*s, 2)[0] for s in sums)
return sorted(set(r*(r+1)//2 for r in iroots if r*(r+1)//2 in sums))
print(auptoexponent(500)) # Michael S. Branicky, Mar 10 2021
A262724
Triangular numbers representable as 3^x + y^3.
Original entry on oeis.org
1, 3, 10, 28, 36, 91, 1081, 2278, 2926, 8001, 46665, 5639761, 10911456, 166066200, 341532180, 3137785371, 1647882316985625, 875366737297292691171, 465198187808352499674075441
Offset: 1
-
list(lim)=my(v=List(),X,t); for(x=0,logint(lim\=1,3), X=3^x; for(y=0, sqrtnint(lim-X,3), if(ispolygonal(t=X+y^3,3), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Sep 28 2015
Showing 1-3 of 3 results.
Comments