A226524 Cubes which are the sum of two consecutive primes.
8, 216, 21952, 74088, 373248, 4251528, 5268024, 10648000, 10941048, 12812904, 14886936, 16003008, 25934336, 40707584, 54872000, 59319000, 114791256, 132651000, 199176704, 209584584, 259694072, 269586136, 306182024, 345948408, 373248000, 543338496, 567663552
Offset: 1
Examples
a(2) = 216: prime(28) + prime(29) = 107 + 109 = 216 = 6^3.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Donovan Johnson)
Crossrefs
Programs
-
Maple
KD: = proc() local a,b,c; a: = ithprime(n) + ithprime(n+1); b:= evalf(a^(1/3)); if b=floor(b) then RETURN(a): fi; end: seq(KD(), n=1..1000000);
-
Mathematica
Select[Total/@Partition[Prime[Range[155*10^5]],2,1],IntegerQ[Surd[#,3]]&] (* or *) stcpQ[n_]:=Module[{p1=NextPrime[Floor[n/2],-1],p2=NextPrime[Ceiling[n/2]]},n==p1+p2]; Select[Range[850]^3,stcpQ] (* The second program is much more efficient than the first. *) (* Harvey P. Dale, May 15 2022 *)
-
PARI
n=0; forstep(j=2, 55778, 2, c=j^3; c2=c/2; if(precprime(c2)+nextprime(c2)==c, n++; write("b226524.txt", n " " c))) /* Donovan Johnson, Sep 02 2013 */
-
PARI
A226524(n)=A074925(n)^3 \\ M. F. Hasler, Jan 03 2020
-
Python
from itertools import count, islice from sympy import nextprime, prevprime def agen(): yield from (c for c in (k**3 for k in count(2, step=2)) if prevprime(c//2+1) + nextprime(c//2-1) == c) print(list(islice(agen(), 27))) # Michael S. Branicky, May 24 2022
Formula
Extensions
Edited by M. F. Hasler, Jan 03 2020