cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226524 Cubes which are the sum of two consecutive primes.

Original entry on oeis.org

8, 216, 21952, 74088, 373248, 4251528, 5268024, 10648000, 10941048, 12812904, 14886936, 16003008, 25934336, 40707584, 54872000, 59319000, 114791256, 132651000, 199176704, 209584584, 259694072, 269586136, 306182024, 345948408, 373248000, 543338496, 567663552
Offset: 1

Views

Author

K. D. Bajpai, Aug 31 2013

Keywords

Examples

			a(2) = 216: prime(28) + prime(29) = 107 + 109 = 216 = 6^3.
		

Crossrefs

Cubes in A001043.
Cf. A062703 (analog for squares), A061308 (lesser of the consecutive primes), A071220 (index of that prime), A074925 (a(n)^(1/3)).

Programs

  • Maple
    KD: = proc() local a,b,c;  a: = ithprime(n) + ithprime(n+1); b:= evalf(a^(1/3)); if b=floor(b) then RETURN(a):  fi; end: seq(KD(), n=1..1000000);
  • Mathematica
    Select[Total/@Partition[Prime[Range[155*10^5]],2,1],IntegerQ[Surd[#,3]]&] (* or *) stcpQ[n_]:=Module[{p1=NextPrime[Floor[n/2],-1],p2=NextPrime[Ceiling[n/2]]},n==p1+p2]; Select[Range[850]^3,stcpQ] (* The second program is much more efficient than the first. *) (* Harvey P. Dale, May 15 2022 *)
  • PARI
    n=0; forstep(j=2, 55778, 2, c=j^3; c2=c/2; if(precprime(c2)+nextprime(c2)==c, n++; write("b226524.txt", n " " c))) /* Donovan Johnson, Sep 02 2013 */
    
  • PARI
    A226524(n)=A074925(n)^3 \\ M. F. Hasler, Jan 03 2020
    
  • Python
    from itertools import count, islice
    from sympy import nextprime, prevprime
    def agen(): yield from (c for c in (k**3 for k in count(2, step=2)) if prevprime(c//2+1) + nextprime(c//2-1) == c)
    print(list(islice(agen(), 27))) # Michael S. Branicky, May 24 2022

Formula

a(n) = A074925(n)^3 = A000040(i) + A000040(i+1) with i = A071220(n) = A000720(A061308(n)). - M. F. Hasler, Jan 03 2020

Extensions

Edited by M. F. Hasler, Jan 03 2020