cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226532 If n = Product_{i>0} prime(i)^e(i), then a(n) = Product_{i>0} prime(i)^(XOR_{j>=i} e(j)), where XOR is bitwise XOR.

Original entry on oeis.org

1, 2, 6, 4, 30, 3, 210, 8, 36, 15, 2310, 24, 30030, 105, 5, 16, 510510, 72, 9699690, 120, 35, 1155, 223092870, 12, 900, 15015, 216, 840, 6469693230, 10, 200560490130, 32, 385, 255255, 7, 9, 7420738134810, 4849845, 5005, 60, 304250263527210, 70, 13082761331670030, 9240, 1080, 111546435, 614889782588491410
Offset: 1

Views

Author

Paul Tek, Jun 10 2013

Keywords

Comments

This sequence is a permutation of the natural numbers.
The powers of 2 are the fixed points of this sequence.
a(prime(i)) = A002110(i) for any i > 0.
a(i^2) = a(i)^2 for any i > 0.
a(A019565(n)) = A019565(A006068(n)) for any n >= 0.

Examples

			a(50) = a(2^1 * 3^0 * 5^2)
      = 2^xor(1,0,2) * 3^xor(0,2) * 5^xor(2)
      = 2^3          * 3^2        * 5^2
      = 1800.
		

Crossrefs

Cf. A006068.
Cf. A226569 (inverse), A067255, A000040.

Programs

  • Haskell
    import Data.Bits (xor)
    a226532 n = product $ zipWith (^)
                a000040_list (scanr1 xor $ a067255_row n :: [Integer])
    -- Reinhard Zumkeller, Jun 11 2013
  • Perl
    # See Tek link.