cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A226569 Inverse permutation to A226532.

Original entry on oeis.org

1, 2, 6, 4, 15, 3, 35, 8, 36, 30, 77, 24, 143, 70, 10, 16, 221, 72, 323, 60, 210, 154, 437, 12, 225, 286, 216, 140, 667, 5, 899, 32, 462, 442, 21, 9, 1147, 646, 858, 120, 1517, 105, 1763, 308, 540, 874, 2021, 96, 1225, 450, 1326, 572, 2491, 108, 1155, 280
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2013

Keywords

Crossrefs

Cf. A000079 (fixed points).

Programs

  • Haskell
    -- import Data.List (elemIndex); import Data.Maybe (fromJust)
    a226569 = (+ 1) . fromJust . (`elemIndex` a226532_list)
  • Maple
    f:= proc(n) local F,Fp,V,m,j,r;
      F:= ifactors(n)[2];
      Fp:= map(numtheory:-pi, F[..,1]);
      m:= max(Fp);
      V:= Vector(m);
      for j from 1 to nops(F) do V[Fp[j]]:= F[j,2] od:
      r:= ithprime(m)^V[m];
      for j from m-1 to 1 by -1 do r:= r * ithprime(j)^Bits:-Xor(V[j],V[j+1]) od;
      r
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Aug 21 2025

Formula

If k = Prod_{i=1..m} prime(i)^e(i), then a(k) = prime(m)^e(m) * Prod_{i=1..m-1} prime(i)^(e(i) xor e(i+1)). - Robert Israel, Aug 21 2025

A227987 If the run lengths of the binary representation of n are [1+r_1, 1+r_2, 1+r_3, ..., 1+r_k], then those of a(n) are [1+(r_1), 1+(r_1 XOR r_2), 1+(r_1 XOR r_2 XOR r_3), ..., 1+(r_1 XOR ... XOR r_k)], where XOR denotes the XOR binary operator.

Original entry on oeis.org

1, 2, 3, 4, 5, 12, 7, 8, 19, 10, 11, 6, 51, 56, 15, 16, 71, 76, 9, 20, 21, 44, 23, 48, 13, 204, 25, 112, 455, 240, 31, 32, 271, 568, 143, 38, 307, 18, 79, 40, 83, 42, 43, 22, 179, 184, 47, 24, 783, 26, 27, 102, 819, 50, 207, 14, 1807, 3640, 911, 120, 3855
Offset: 1

Views

Author

Paul Tek, Aug 02 2013

Keywords

Comments

This is a permutation of the natural numbers with inverse permutation A225607.
The sequence (n, a(n), a(a(n)), a(a(a(n))),...) is periodic for any n.
The run lengths of the binary representation of a fixed point are of the form [1, 1,...,1, K] (any number of ones followed by any number).

Examples

			For n=927:
(1) binary representation of n = "1110011111",
(2) run lengths of n = [1+2,1+1,1+4],
(3) run lengths of a(n) = [1+(2),1+(2 XOR 1),1+(2 XOR 1 XOR 4)]=[3,4,8],
(4) binary representation of a(n) = "111000011111111",
(5) a(n) = 28927.
		

Crossrefs

Cf. A056539, A226532, A225607 (inverse).

Programs

  • Perl
    # See Tek link.
Showing 1-2 of 2 results.