A226532 If n = Product_{i>0} prime(i)^e(i), then a(n) = Product_{i>0} prime(i)^(XOR_{j>=i} e(j)), where XOR is bitwise XOR.
1, 2, 6, 4, 30, 3, 210, 8, 36, 15, 2310, 24, 30030, 105, 5, 16, 510510, 72, 9699690, 120, 35, 1155, 223092870, 12, 900, 15015, 216, 840, 6469693230, 10, 200560490130, 32, 385, 255255, 7, 9, 7420738134810, 4849845, 5005, 60, 304250263527210, 70, 13082761331670030, 9240, 1080, 111546435, 614889782588491410
Offset: 1
Keywords
Examples
a(50) = a(2^1 * 3^0 * 5^2) = 2^xor(1,0,2) * 3^xor(0,2) * 5^xor(2) = 2^3 * 3^2 * 5^2 = 1800.
Links
Programs
-
Haskell
import Data.Bits (xor) a226532 n = product $ zipWith (^) a000040_list (scanr1 xor $ a067255_row n :: [Integer]) -- Reinhard Zumkeller, Jun 11 2013
-
Perl
# See Tek link.
Comments