A226545 Number A(n,k) of squares in all tilings of a k X n rectangle using integer-sided square tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals.
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 5, 3, 0, 0, 4, 12, 12, 4, 0, 0, 5, 25, 34, 25, 5, 0, 0, 6, 50, 98, 98, 50, 6, 0, 0, 7, 96, 256, 386, 256, 96, 7, 0, 0, 8, 180, 654, 1402, 1402, 654, 180, 8, 0, 0, 9, 331, 1625, 4938, 6940, 4938, 1625, 331, 9, 0
Offset: 0
Examples
A(3,3) = 1 + 6 + 6 + 6 + 6 + 9 = 34: ._____. ._____. ._____. ._____. ._____. ._____. | | | |_| |_| | |_|_|_| |_|_|_| |_|_|_| | | |___|_| |_|___| |_| | | |_| |_|_|_| |_____| |_|_|_| |_|_|_| |_|___| |___|_| |_|_|_| Square array A(n,k) begins: 0, 0, 0, 0, 0, 0, 0, 0, ... 0, 1, 2, 3, 4, 5, 6, 7, ... 0, 2, 5, 12, 25, 50, 96, 180, ... 0, 3, 12, 34, 98, 256, 654, 1625, ... 0, 4, 25, 98, 386, 1402, 4938, 16936, ... 0, 5, 50, 256, 1402, 6940, 33502, 157279, ... 0, 6, 96, 654, 4938, 33502, 221672, 1426734, ... 0, 7, 180, 1625, 16936, 157279, 1426734, 12582472, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..30, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, l) option remember; local i, k, s, t; if max(l[])>n then [0,0] elif n=0 or l=[] then [1,0] elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l)) else for k do if l[k]=0 then break fi od; s:=[0$2]; for i from k to nops(l) while l[i]=0 do s:=s+(h->h+[0, h[1]]) (b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])) od; s fi end: A:= (n, k)-> `if`(n>=k, b(n, [0$k]), b(k, [0$n]))[2]: seq(seq(A(n, d-n), n=0..d), d=0..14);
-
Mathematica
b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[Max[l] > n, {0, 0}, n == 0 || l == {}, {1, 0}, Min[l] > 0, t=Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; s={0, 0}; For[i=k, i <= Length[l] && l[[i]] == 0, i++, s = s + Function[h, h+{0, h[[1]]}][b[n, Join[l[[1 ;; k-1]], Table[1+i-k, {j, k, i}], l[[i+1 ;; -1]]]]] ]; s]]; a[n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]][[2]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)