cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A219924 Number A(n,k) of tilings of a k X n rectangle using integer-sided square tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 6, 5, 1, 1, 1, 1, 8, 13, 13, 8, 1, 1, 1, 1, 13, 28, 40, 28, 13, 1, 1, 1, 1, 21, 60, 117, 117, 60, 21, 1, 1, 1, 1, 34, 129, 348, 472, 348, 129, 34, 1, 1, 1, 1, 55, 277, 1029, 1916, 1916, 1029, 277, 55, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 01 2012

Keywords

Comments

For drawings of A(1,1), A(2,2), ..., A(5,5) see A224239.

Examples

			A(3,3) = 6, because there are 6 tilings of a 3 X 3 rectangle using integer-sided squares:
  ._____.  ._____.  ._____.  ._____.  ._____.  ._____.
  |     |  |   |_|  |_|   |  |_|_|_|  |_|_|_|  |_|_|_|
  |     |  |___|_|  |_|___|  |_|   |  |   |_|  |_|_|_|
  |_____|  |_|_|_|  |_|_|_|  |_|___|  |___|_|  |_|_|_|
Square array A(n,k) begins:
  1,  1,  1,   1,    1,    1,     1,      1, ...
  1,  1,  1,   1,    1,    1,     1,      1, ...
  1,  1,  2,   3,    5,    8,    13,     21, ...
  1,  1,  3,   6,   13,   28,    60,    129, ...
  1,  1,  5,  13,   40,  117,   348,   1029, ...
  1,  1,  8,  28,  117,  472,  1916,   7765, ...
  1,  1, 13,  60,  348, 1916, 10668,  59257, ...
  1,  1, 21, 129, 1029, 7765, 59257, 450924, ...
		

Crossrefs

Columns (or rows) k=0+1, 2-10 give: A000012, A000045(n+1), A002478, A054856, A054857, A219925, A219926, A219927, A219928, A219929.
Main diagonal gives A045846.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then 0 elif n=0 or l=[] then 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:=0;
             for i from k to nops(l) while l[i]=0 do s:=s+
               b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])
             od; s
          fi
        end:
    A:= (n, k)-> `if`(n>=k, b(n, [0$k]), b(k, [0$n])):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
    # The following is a second version of the program that lists the actual dissections. It produces a list of pairs for each dissection:
    b:= proc(n, l, ll) local i, k, s, t;
          if max(l[])>n then 0 elif n=0 or l=[] then lprint(ll); 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l), ll)
        else for k do if l[k]=0 then break fi od; s:=0;
             for i from k to nops(l) while l[i]=0 do s:=s+
               b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)],
                [ll[],[k,1+i-k]])
             od; s
          fi
        end:
    A:= (n, k)-> b(k, [0$n], []):
    A(5,5);
    # In each list [a,b] means put a square with side length b at
    leftmost possible position with upper corner in row a.  For example
    [[1,3], [4,2], [4,2], [1,2], [3,1], [3,1], [4,1], [5,1]], gives:
     ___.___.
    |     |   |
    |     |_|
    |___|_|_|
    |   |   |_|
    |_|___|_|
  • Mathematica
    b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[Max[l] > n, 0, n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; s = 0; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s + b[n, Join[l[[1;; k-1]], Table[1+i-k, {j, k, i}], l[[i+1;; -1]] ] ] ]; s]]; a[n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from 1st Maple program *)

A113881 Table of smallest number of squares, T(m,n), needed to tile an m X n rectangle, read by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 4, 3, 3, 4, 5, 2, 1, 2, 5, 6, 4, 4, 4, 4, 6, 7, 3, 4, 1, 4, 3, 7, 8, 5, 2, 5, 5, 2, 5, 8, 9, 4, 5, 3, 1, 3, 5, 4, 9, 10, 6, 5, 5, 5, 5, 5, 5, 6, 10, 11, 5, 3, 2, 5, 1, 5, 2, 3, 5, 11, 12, 7, 6, 6, 5, 5, 5, 5, 6, 6, 7, 12, 13, 6, 6, 4, 6, 4, 1, 4, 6, 4, 6, 6, 13, 14, 8, 4, 6, 2, 3, 7, 7, 3, 2, 6, 4, 8, 14
Offset: 1

Views

Author

Devin Kilminster (devin(AT)27720.net), Jan 27 2006

Keywords

Comments

a(n) = A338573(n) for n <= 105, as stated by R. J. Mathar. These sequences are essentially different though, because a(13433) = T(67,98) = T(98,67) = a(13464), but A338573(13433) != A338573(13464). The relationship between the tiling problem and resistor networks is remarkable. There are explanations in M. Ortolano et al., 2013. - Rainer Rosenthal, Nov 09 2020

Examples

			T(n,n) = 1 (1 n X n square).
T(n,1) = n (n 1 X 1 squares).
T(6,7) = 6 (2 3 X 3, 1 4 X 4, 1 2 X 2, 2 1 X 1).
T(11,13) = 6 (1 7 X 7, 1 6 X 6, 1 5 X 5, 2 4 X 4 1 1 X 1).
Table T(m,n) begins:
:   1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
:   2, 1, 3, 2, 4, 3, 5, 4, 6,  5, ...
:   3, 3, 1, 4, 4, 2, 5, 5, 3,  6, ...
:   4, 2, 4, 1, 5, 3, 5, 2, 6,  4, ...
:   5, 4, 4, 5, 1, 5, 5, 5, 6,  2, ...
:   6, 3, 2, 3, 5, 1, 5, 4, 3,  4, ...
:   7, 5, 5, 5, 5, 5, 1, 7, 6,  6, ...
:   8, 4, 5, 2, 5, 4, 7, 1, 7,  5, ...
:   9, 6, 3, 6, 6, 3, 6, 7, 1,  6, ...
:  10, 5, 6, 4, 2, 4, 6, 5, 6,  1, ...
		

Crossrefs

Programs

  • Mathematica
    (* *** Warning *** This empirical toy-program is based on the greedy algorithm. Its output was only verified for n+k <= 32. Any use outside this domain might produce only upper bounds instead of minimums. *)
    nmax = 31; Clear[T];
    Tmin[n_, k_] := Table[{1 + T[ c, k - c] + T[n - c, k], 1 + T[n, k - c] + T[n - c, c]}, {c, 1, k - 1}] // Flatten // Min;
    Tmin2[n_, k_] := Module[{n1, n2, k1, k2}, 1 + T[n2, k1 + 1] + T[n - n1, k2] + T[n - n2, k1] + T[n1, k - k1] /. {Reduce[1 <= n1 <= n - 1 && 1 <= n2 <= n - 1 && 1 <= k1 <= k - 1 && 1 <= k2 <= k - 1 && n1 + 1 + n2 == n && k1 + 1 + k2 == k, Integers] // ToRules} // Min];
    T[n_, n_] = 1;
    T[n_, 1] := n;
    T[1, k_] := k;
    T[n_, k_ /; k > 1] /; n > k && Divisible[n, k] := n/k;
    T[n_, k_ /; k > 1] /; n > k := T[n, k] = If[k >= 5 && n >= 6 && n - k <= 3, Min[Tmin[n, k], Tmin2[n, k], T[k, n - k] + 1], T[k, n - k] + 1];
    T[n_, k_ /; k > 1] /; n < k := T[n, k] = T[k, n];
    Table[T[n - k + 1, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 11 2016, checked against first 496 terms of the b-file *)

A226554 Number of squares in all tilings of an n X n square using integer-sided square tiles.

Original entry on oeis.org

0, 1, 5, 34, 386, 6940, 221672, 12582472, 1293374998, 242394178200, 83374069529638, 52845726291860344, 61928161880183204434, 134499571879749571406816, 542432658409586214809714176, 4068438590479352629770422328000, 56820656114941381799512710314429768
Offset: 0

Views

Author

Alois P. Heinz, Jun 10 2013

Keywords

Crossrefs

Main diagonal of A226545.
Row sums of A226936.
Cf. A045846.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then [0, 0] elif n=0 or l=[] then [1, 0]
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:=[0$2];
             for i from k to nops(l) while l[i]=0 do s:=s+(h->h+[0, h[1]])
               (b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))
             od; s
          fi
        end:
    a:= n-> b(n, [0$n])[2]:
    seq(a(n), n=0..10);
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{i, k, s, t},
         Which[Max[l] > n, {0, 0}, n == 0 || l == {}, {1, 0},
         Min[l] > 0, t = Min[l]; b[n - t, l - t], True,
           k = Position[l, 0, 1][[1, 1]]; s = {0, 0};
         For[i = k, i <= Length[l] && l[[i]] == 0, i++,
           s = s + Function[h, h + {0, h[[1]]}][b[n, Join[l[[1;; k-1]],
           Table[1+i-k, {j, k, i}], l[[i+1;;]]]]]]; s]];
    a[n_] := b[n, Array[0&, n]][[2]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 27 2022, after Alois P. Heinz in A226545 *)

Extensions

a(16) from Alois P. Heinz, Nov 16 2016

A226546 Number of squares in all tilings of a 3 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

0, 3, 12, 34, 98, 256, 654, 1625, 3964, 9533, 22662, 53373, 124728, 289572, 668514, 1535869, 3513614, 8008090, 18191184, 41200568, 93064834, 209710139, 471520566, 1058065647, 2369890254, 5299215579, 11830941840, 26375563624, 58722396932, 130576680919
Offset: 0

Views

Author

Alois P. Heinz, Jun 10 2013

Keywords

Crossrefs

Column k=3 of A226545.
Cf. A002478.

Programs

  • PARI
    concat(0, Vec(x*(3 + 6*x + x^2) / (1 - x - 2*x^2 - x^3)^2 + O(x^30))) \\ Colin Barker, Jun 07 2020

Formula

G.f.: (x^2+6*x+3)*x/(x^3+2*x^2+x-1)^2.
a(n) = 2*a(n-1) + 3*a(n-2) - 2*a(n-3) - 6*a(n-4) - 4*a(n-5) - a(n-6) for n>5. - Colin Barker, Jun 07 2020

A226547 Number of squares in all tilings of a 4 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

0, 4, 25, 98, 386, 1402, 4938, 16936, 57020, 189172, 620397, 2015456, 6496391, 20801576, 66231279, 209847980, 662049349, 2080850248, 6518383898, 20358327362, 63413001935, 197042859318, 610922240964, 1890331512546, 5838350817615, 18001432735438, 55417333344241
Offset: 0

Views

Author

Alois P. Heinz, Jun 10 2013

Keywords

Crossrefs

Column k=4 of A226545.
Cf. A054856.

Programs

  • PARI
    concat(0, Vec(x*(4 + 9*x - 10*x^2 - 8*x^3 + 6*x^4 + x^5) / ((1 + x)^2*(1 - 3*x + x^4)^2) + O(x^30))) \\ Colin Barker, Jun 07 2020

Formula

G.f.: (x^5+6*x^4-8*x^3-10*x^2+9*x+4)*x/((x+1)^2*(x^4-3*x+1)^2).
a(n) = 4*a(n-1) + 2*a(n-2) - 12*a(n-3) - 11*a(n-4) + 2*a(n-5) + 10*a(n-6) + 6*a(n-7) - a(n-8) - 2*a(n-9) - a(n-10) for n>9. - Colin Barker, Jun 07 2020

A226548 Number of squares in all tilings of a 5 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

0, 5, 50, 256, 1402, 6940, 33502, 157279, 725080, 3293575, 14789640, 65785991, 290341336, 1272947979, 5549535668, 24075671345, 104002776564, 447586575256, 1919810662952, 8210002538205, 35015688030978, 148980204943747, 632466650426456, 2679623444793841
Offset: 0

Views

Author

Alois P. Heinz, Jun 10 2013

Keywords

Crossrefs

Column k=5 of A226545.
Cf. A054857.

Formula

G.f.: (x^10 +12*x^9 +28*x^8 +54*x^7 +33*x^6 +18*x^5 -53*x^4 -42*x^3 +6*x^2 +30*x+5)*x / (x^8 +3*x^7 +2*x^6 +5*x^5 +x^4 -6*x^3 -7*x^2 -2*x+1)^2.

A226549 Number of squares in all tilings of a 6 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

0, 6, 96, 654, 4938, 33502, 221672, 1426734, 9014839, 56128696, 345447208, 2106033948, 12739126739, 76548375758, 457375097789, 2719454021744, 16100269337597, 94961606031670, 558226473615469, 3271710478901046, 19123726111508773, 111510459865449832
Offset: 0

Views

Author

Alois P. Heinz, Jun 10 2013

Keywords

Crossrefs

Column k=6 of A226545.
Cf. A219925.

Formula

G.f.: (4*x^23 +60*x^22 +203*x^21 +308*x^20 -35*x^19 -660*x^18 -964*x^17 -612*x^16 +239*x^15 +344*x^14 +683*x^13 +686*x^12 +1156*x^11 +1944*x^10 -341*x^9 -2280*x^8 -1775*x^7 +588*x^6 +1550*x^5 +70*x^4 -498*x^3 -48*x^2 +60*x+6)*x / (2*x^15 +7*x^14 +12*x^13 +6*x^12 -18*x^11 -13*x^10 -8*x^9 -27*x^8 -32*x^7 +x^6 +40*x^5 +34*x^4 -3*x^3 -15*x^2 -3*x+1)^2.

A226550 Number of squares in all tilings of a 7 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

0, 7, 180, 1625, 16936, 157279, 1426734, 12582472, 108971358, 929801662, 7842704798, 65526395993, 543197940936, 4473218574611, 36628689696182, 298465716569236, 2421637058537566, 19574314969125483, 157692516088571216, 1266593481935599039, 10146033357194978996
Offset: 0

Views

Author

Alois P. Heinz, Jun 10 2013

Keywords

Crossrefs

Column k=7 of A226545.
Cf. A219926.

Formula

G.f.: (36*x^42 +492*x^41 +97*x^40 -1280*x^39 +1374*x^38 +3986*x^37 -3294*x^36 -12844*x^35 -17178*x^34 -5612*x^33 -8231*x^32 -68874*x^31 -38198*x^30 +87106*x^29 +79120*x^28 +342382*x^27 +1028045*x^26 +1129834*x^25 +797531*x^24 +933000*x^23 +781401*x^22 -15364*x^21 -688028*x^20 -1167490*x^19 -1199056*x^18 -495108*x^17 +175219*x^16 +637592*x^15 +810642*x^14 +590608*x^13 +255600*x^12 -62792*x^11 -226422*x^10 -130944*x^9 -26229*x^8 +21996*x^7 +25573*x^6 +5782*x^5 -3711*x^4 -1682*x^3 +174*x^2 +138*x+7)*x / (6*x^25 +11*x^24 -9*x^23 -10*x^22 +39*x^21 +12*x^20 -70*x^19 -281*x^18 -403*x^17 -110*x^16 -118*x^15 -790*x^14 -179*x^13 +466*x^12 +327*x^11 +669*x^10 +1028*x^9 +231*x^8 -45*x^7 -284*x^6 -273*x^5 -61*x^4 +45*x^3 +31*x^2 +3*x-1)^2.

A226551 Number of squares in all tilings of an 8 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

0, 8, 331, 3964, 57020, 725080, 9014839, 108971358, 1293374998, 15124830042, 174840029210, 2002005705582, 22744617716405, 256690848493684, 2880580641585200, 32167728035568302, 357685528356070536, 3962274174725426092, 43745566808355289539, 481531500069734159312
Offset: 0

Views

Author

Alois P. Heinz, Jun 10 2013

Keywords

Crossrefs

Column k=8 of A226545.
Cf. A219927.

A226552 Number of squares in all tilings of a 9 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

0, 9, 600, 9533, 189172, 3293575, 56128696, 929801662, 15124830042, 242394178200, 3840094402532, 60260456120659, 938232581234924, 14511287055938491, 223171309100257664, 3415393756038359269, 52045507693324954598, 790109733965301854764, 11954668671384269574304
Offset: 0

Views

Author

Alois P. Heinz, Jun 10 2013

Keywords

Crossrefs

Column k=9 of A226545.
Cf. A219928.
Showing 1-10 of 11 results. Next