A219924
Number A(n,k) of tilings of a k X n rectangle using integer-sided square tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 6, 5, 1, 1, 1, 1, 8, 13, 13, 8, 1, 1, 1, 1, 13, 28, 40, 28, 13, 1, 1, 1, 1, 21, 60, 117, 117, 60, 21, 1, 1, 1, 1, 34, 129, 348, 472, 348, 129, 34, 1, 1, 1, 1, 55, 277, 1029, 1916, 1916, 1029, 277, 55, 1, 1
Offset: 0
A(3,3) = 6, because there are 6 tilings of a 3 X 3 rectangle using integer-sided squares:
._____. ._____. ._____. ._____. ._____. ._____.
| | | |_| |_| | |_|_|_| |_|_|_| |_|_|_|
| | |___|_| |_|___| |_| | | |_| |_|_|_|
|_____| |_|_|_| |_|_|_| |_|___| |___|_| |_|_|_|
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 3, 5, 8, 13, 21, ...
1, 1, 3, 6, 13, 28, 60, 129, ...
1, 1, 5, 13, 40, 117, 348, 1029, ...
1, 1, 8, 28, 117, 472, 1916, 7765, ...
1, 1, 13, 60, 348, 1916, 10668, 59257, ...
1, 1, 21, 129, 1029, 7765, 59257, 450924, ...
Columns (or rows) k=0+1, 2-10 give:
A000012,
A000045(n+1),
A002478,
A054856,
A054857,
A219925,
A219926,
A219927,
A219928,
A219929.
-
b:= proc(n, l) option remember; local i, k, s, t;
if max(l[])>n then 0 elif n=0 or l=[] then 1
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
else for k do if l[k]=0 then break fi od; s:=0;
for i from k to nops(l) while l[i]=0 do s:=s+
b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])
od; s
fi
end:
A:= (n, k)-> `if`(n>=k, b(n, [0$k]), b(k, [0$n])):
seq(seq(A(n, d-n), n=0..d), d=0..14);
# The following is a second version of the program that lists the actual dissections. It produces a list of pairs for each dissection:
b:= proc(n, l, ll) local i, k, s, t;
if max(l[])>n then 0 elif n=0 or l=[] then lprint(ll); 1
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l), ll)
else for k do if l[k]=0 then break fi od; s:=0;
for i from k to nops(l) while l[i]=0 do s:=s+
b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)],
[ll[],[k,1+i-k]])
od; s
fi
end:
A:= (n, k)-> b(k, [0$n], []):
A(5,5);
# In each list [a,b] means put a square with side length b at
leftmost possible position with upper corner in row a. For example
[[1,3], [4,2], [4,2], [1,2], [3,1], [3,1], [4,1], [5,1]], gives:
___.___.
| | |
| |_|
|___|_|_|
| | |_|
|_|___|_|
-
b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[Max[l] > n, 0, n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; s = 0; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s + b[n, Join[l[[1;; k-1]], Table[1+i-k, {j, k, i}], l[[i+1;; -1]] ] ] ]; s]]; a[n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from 1st Maple program *)
A113881
Table of smallest number of squares, T(m,n), needed to tile an m X n rectangle, read by antidiagonals.
Original entry on oeis.org
1, 2, 2, 3, 1, 3, 4, 3, 3, 4, 5, 2, 1, 2, 5, 6, 4, 4, 4, 4, 6, 7, 3, 4, 1, 4, 3, 7, 8, 5, 2, 5, 5, 2, 5, 8, 9, 4, 5, 3, 1, 3, 5, 4, 9, 10, 6, 5, 5, 5, 5, 5, 5, 6, 10, 11, 5, 3, 2, 5, 1, 5, 2, 3, 5, 11, 12, 7, 6, 6, 5, 5, 5, 5, 6, 6, 7, 12, 13, 6, 6, 4, 6, 4, 1, 4, 6, 4, 6, 6, 13, 14, 8, 4, 6, 2, 3, 7, 7, 3, 2, 6, 4, 8, 14
Offset: 1
Devin Kilminster (devin(AT)27720.net), Jan 27 2006
T(n,n) = 1 (1 n X n square).
T(n,1) = n (n 1 X 1 squares).
T(6,7) = 6 (2 3 X 3, 1 4 X 4, 1 2 X 2, 2 1 X 1).
T(11,13) = 6 (1 7 X 7, 1 6 X 6, 1 5 X 5, 2 4 X 4 1 1 X 1).
Table T(m,n) begins:
: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
: 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, ...
: 3, 3, 1, 4, 4, 2, 5, 5, 3, 6, ...
: 4, 2, 4, 1, 5, 3, 5, 2, 6, 4, ...
: 5, 4, 4, 5, 1, 5, 5, 5, 6, 2, ...
: 6, 3, 2, 3, 5, 1, 5, 4, 3, 4, ...
: 7, 5, 5, 5, 5, 5, 1, 7, 6, 6, ...
: 8, 4, 5, 2, 5, 4, 7, 1, 7, 5, ...
: 9, 6, 3, 6, 6, 3, 6, 7, 1, 6, ...
: 10, 5, 6, 4, 2, 4, 6, 5, 6, 1, ...
- Alois P. Heinz, Antidiagonals n = 1..350, flattened (using data from A219158)
- Bertram Felgenhauer, Filling rectangles with integer-sided squares
- Richard J. Kenyon, Tiling a rectangle with the fewest squares, Combin. Theory Ser. A 76 (1996), no. 2, 272-291.
- M. Ortolano, M. Abrate, and L. Callegaro, On the synthesis of Quantum Hall Array Resistance Standards, arXiv preprint arXiv:1311.0756 [physics.ins-det], 2013.
- Mark Walters, Rectangles as sums of squares, Discrete Math. 309 (2009), no. 9, 2913-2921.
-
(* *** Warning *** This empirical toy-program is based on the greedy algorithm. Its output was only verified for n+k <= 32. Any use outside this domain might produce only upper bounds instead of minimums. *)
nmax = 31; Clear[T];
Tmin[n_, k_] := Table[{1 + T[ c, k - c] + T[n - c, k], 1 + T[n, k - c] + T[n - c, c]}, {c, 1, k - 1}] // Flatten // Min;
Tmin2[n_, k_] := Module[{n1, n2, k1, k2}, 1 + T[n2, k1 + 1] + T[n - n1, k2] + T[n - n2, k1] + T[n1, k - k1] /. {Reduce[1 <= n1 <= n - 1 && 1 <= n2 <= n - 1 && 1 <= k1 <= k - 1 && 1 <= k2 <= k - 1 && n1 + 1 + n2 == n && k1 + 1 + k2 == k, Integers] // ToRules} // Min];
T[n_, n_] = 1;
T[n_, 1] := n;
T[1, k_] := k;
T[n_, k_ /; k > 1] /; n > k && Divisible[n, k] := n/k;
T[n_, k_ /; k > 1] /; n > k := T[n, k] = If[k >= 5 && n >= 6 && n - k <= 3, Min[Tmin[n, k], Tmin2[n, k], T[k, n - k] + 1], T[k, n - k] + 1];
T[n_, k_ /; k > 1] /; n < k := T[n, k] = T[k, n];
Table[T[n - k + 1, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 11 2016, checked against first 496 terms of the b-file *)
A226554
Number of squares in all tilings of an n X n square using integer-sided square tiles.
Original entry on oeis.org
0, 1, 5, 34, 386, 6940, 221672, 12582472, 1293374998, 242394178200, 83374069529638, 52845726291860344, 61928161880183204434, 134499571879749571406816, 542432658409586214809714176, 4068438590479352629770422328000, 56820656114941381799512710314429768
Offset: 0
-
b:= proc(n, l) option remember; local i, k, s, t;
if max(l[])>n then [0, 0] elif n=0 or l=[] then [1, 0]
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
else for k do if l[k]=0 then break fi od; s:=[0$2];
for i from k to nops(l) while l[i]=0 do s:=s+(h->h+[0, h[1]])
(b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))
od; s
fi
end:
a:= n-> b(n, [0$n])[2]:
seq(a(n), n=0..10);
-
b[n_, l_] := b[n, l] = Module[{i, k, s, t},
Which[Max[l] > n, {0, 0}, n == 0 || l == {}, {1, 0},
Min[l] > 0, t = Min[l]; b[n - t, l - t], True,
k = Position[l, 0, 1][[1, 1]]; s = {0, 0};
For[i = k, i <= Length[l] && l[[i]] == 0, i++,
s = s + Function[h, h + {0, h[[1]]}][b[n, Join[l[[1;; k-1]],
Table[1+i-k, {j, k, i}], l[[i+1;;]]]]]]; s]];
a[n_] := b[n, Array[0&, n]][[2]];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 27 2022, after Alois P. Heinz in A226545 *)
A226546
Number of squares in all tilings of a 3 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
0, 3, 12, 34, 98, 256, 654, 1625, 3964, 9533, 22662, 53373, 124728, 289572, 668514, 1535869, 3513614, 8008090, 18191184, 41200568, 93064834, 209710139, 471520566, 1058065647, 2369890254, 5299215579, 11830941840, 26375563624, 58722396932, 130576680919
Offset: 0
A226547
Number of squares in all tilings of a 4 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
0, 4, 25, 98, 386, 1402, 4938, 16936, 57020, 189172, 620397, 2015456, 6496391, 20801576, 66231279, 209847980, 662049349, 2080850248, 6518383898, 20358327362, 63413001935, 197042859318, 610922240964, 1890331512546, 5838350817615, 18001432735438, 55417333344241
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,2,-12,-11,2,10,6,-1,-2,-1).
A226548
Number of squares in all tilings of a 5 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
0, 5, 50, 256, 1402, 6940, 33502, 157279, 725080, 3293575, 14789640, 65785991, 290341336, 1272947979, 5549535668, 24075671345, 104002776564, 447586575256, 1919810662952, 8210002538205, 35015688030978, 148980204943747, 632466650426456, 2679623444793841
Offset: 0
A226549
Number of squares in all tilings of a 6 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
0, 6, 96, 654, 4938, 33502, 221672, 1426734, 9014839, 56128696, 345447208, 2106033948, 12739126739, 76548375758, 457375097789, 2719454021744, 16100269337597, 94961606031670, 558226473615469, 3271710478901046, 19123726111508773, 111510459865449832
Offset: 0
A226550
Number of squares in all tilings of a 7 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
0, 7, 180, 1625, 16936, 157279, 1426734, 12582472, 108971358, 929801662, 7842704798, 65526395993, 543197940936, 4473218574611, 36628689696182, 298465716569236, 2421637058537566, 19574314969125483, 157692516088571216, 1266593481935599039, 10146033357194978996
Offset: 0
A226551
Number of squares in all tilings of an 8 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
0, 8, 331, 3964, 57020, 725080, 9014839, 108971358, 1293374998, 15124830042, 174840029210, 2002005705582, 22744617716405, 256690848493684, 2880580641585200, 32167728035568302, 357685528356070536, 3962274174725426092, 43745566808355289539, 481531500069734159312
Offset: 0
A226552
Number of squares in all tilings of a 9 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
0, 9, 600, 9533, 189172, 3293575, 56128696, 929801662, 15124830042, 242394178200, 3840094402532, 60260456120659, 938232581234924, 14511287055938491, 223171309100257664, 3415393756038359269, 52045507693324954598, 790109733965301854764, 11954668671384269574304
Offset: 0
Showing 1-10 of 11 results.
Comments