cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A054857 Number of ways to tile a 5 X n region with square tiles of size up to 5 X 5.

Original entry on oeis.org

1, 1, 8, 28, 117, 472, 1916, 7765, 31497, 127707, 517881, 2100025, 8515772, 34532063, 140030059, 567832091, 2302600696, 9337214060, 37863085664, 153537580071, 622606110920, 2524713292359, 10237896957896, 41515420557135
Offset: 0

Views

Author

Silvia Heubach (silvi(AT)cine.net), Apr 21 2000

Keywords

Examples

			a(2) = 8 as there is 1 tiling of a 5 X 2 region with only 1 X 1 tiles, 4 tilings with exactly one 2 X 2 tile and 3 tilings with exactly two 2 X 2 tiles.
		

Crossrefs

Column k=5 of A219924. - Alois P. Heinz, Dec 01 2012

Programs

  • Mathematica
    f[ {A_, B_} ] := Module[ {til = A, basic = B}, {Flatten[ Append[ til, ListConvolve[ A, B ] ] ], AppendTo[ basic, B[ [ -1 ] ] + B[ [ -2 ] ] + B[ [ -3 ] ] ]} ]; NumOfTilings[ n_ ] := Nest[ f, {{1, 1, 8, 28, 117, 472, 1916, 7765}, {1, 7, 13, 20, 35, 66, 118, 218}}, n - 2 ][ [ 1 ] ] NumOfTilings[ 30 ]

Formula

a(n) = b(1)a(n-1)+b(2)a(n-2)+...+b(n)a(0), a(0)=a(1)=1, b(n) as defined in A054858.
a(n) = 2*a(n-1) +7*a(n-2) +6*a(n-3) -a(n-4) -5*a(n-5) -2*a(n-6) -3*a(n-7) -a(n-8). - R. J. Mathar, Nov 02 2008
G.f.: -(x^3+x^2+x-1)/(x^8+3*x^7+2*x^6+5*x^5+x^4-6*x^3-7*x^2-2*x+1). - Colin Barker, Jul 10 2012

A226545 Number A(n,k) of squares in all tilings of a k X n rectangle using integer-sided square tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 5, 3, 0, 0, 4, 12, 12, 4, 0, 0, 5, 25, 34, 25, 5, 0, 0, 6, 50, 98, 98, 50, 6, 0, 0, 7, 96, 256, 386, 256, 96, 7, 0, 0, 8, 180, 654, 1402, 1402, 654, 180, 8, 0, 0, 9, 331, 1625, 4938, 6940, 4938, 1625, 331, 9, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 10 2013

Keywords

Examples

			A(3,3) = 1 + 6 + 6 + 6 + 6 + 9 = 34:
  ._____.  ._____.  ._____.  ._____.  ._____.  ._____.
  |     |  |   |_|  |_|   |  |_|_|_|  |_|_|_|  |_|_|_|
  |     |  |___|_|  |_|___|  |_|   |  |   |_|  |_|_|_|
  |_____|  |_|_|_|  |_|_|_|  |_|___|  |___|_|  |_|_|_|
Square array A(n,k) begins:
  0, 0,   0,    0,     0,      0,       0,        0, ...
  0, 1,   2,    3,     4,      5,       6,        7, ...
  0, 2,   5,   12,    25,     50,      96,      180, ...
  0, 3,  12,   34,    98,    256,     654,     1625, ...
  0, 4,  25,   98,   386,   1402,    4938,    16936, ...
  0, 5,  50,  256,  1402,   6940,   33502,   157279, ...
  0, 6,  96,  654,  4938,  33502,  221672,  1426734, ...
  0, 7, 180, 1625, 16936, 157279, 1426734, 12582472, ...
		

Crossrefs

Columns (or rows) k=0-10 give: A000004, A001477, A067331(n-1) for n>0, A226546, A226547, A226548, A226549, A226550, A226551, A226552, A226553.
Main diagonal gives A226554.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then [0,0] elif n=0 or l=[] then [1,0]
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:=[0$2];
             for i from k to nops(l) while l[i]=0 do s:=s+(h->h+[0, h[1]])
               (b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))
             od; s
          fi
        end:
    A:= (n, k)-> `if`(n>=k, b(n, [0$k]), b(k, [0$n]))[2]:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[Max[l] > n, {0, 0}, n == 0 || l == {}, {1, 0}, Min[l] > 0, t=Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; s={0, 0}; For[i=k, i <= Length[l] && l[[i]] == 0, i++, s = s + Function[h, h+{0, h[[1]]}][b[n, Join[l[[1 ;; k-1]], Table[1+i-k, {j, k, i}], l[[i+1 ;; -1]]]]] ]; s]]; a[n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]][[2]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
Showing 1-2 of 2 results.