Original entry on oeis.org
1, 1, 3, 6, 13, 28, 60, 129, 277, 595, 1278, 2745, 5896, 12664, 27201, 58425, 125491, 269542, 578949, 1243524, 2670964, 5736961, 12322413, 26467299, 56849086, 122106097, 262271568, 563332848, 1209982081, 2598919345, 5582216355, 11990037126, 25753389181
Offset: 0
a(3)=6 as there is one tiling of a 3 X 3 region with only 1 X 1 tiles, 4 tilings with exactly one 2 X 2 tile and 1 tiling consisting of the 3 X 3 tile.
- Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
- L. Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 322.
- S. Heubach, Tiling an m X n Area with Squares of Size up to k X k (m<=5), Congressus Numerantium 140 (1999), pp. 43-64.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..300
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Emeric Deutsch, Counting tilings with L-tiles and squares, Problem 10877, Amer. Math. Monthly, 110 (March 2003), 245-246.
- Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, arXiv:1907.06517 [math.CO], 2019.
- Leonhard Euler, Vollstaendige Anleitung zur Algebra, Zweiter Teil.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 412
- Milan Janjić, Pascal Triangle and Restricted Words, arXiv:1705.02497 [math.CO], 2017.
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Richard J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 19 (halved...).
- Richard J. Mathar, Bivariate Generating Functions Enumerating Non-Bonding Dominoes on Rectangular Boards, arXiv:2404.18806 [math.CO], 2024. See p. 5.
- Sam Northshield, Some generalizations of a formula of Reznick, SUNY Plattsburgh (2022).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016. See Appendix B2.
- Index entries for linear recurrences with constant coefficients, signature (1,2,1).
-
I:=[1,1,3]; [n le 3 select I[n] else Self(n-1) +2*Self(n-2) +Self(n-3): n in [1..41]]; // G. C. Greubel, Apr 14 2023
-
f[A_]:= Module[{til = A}, AppendTo[til, A[[-1]] + 2A[[-2]] + A[[-3]]]]; NumOfTilings[ n_ ]:= Nest[ f, {1,1,3}, n-2]; NumOfTilings[30]
LinearRecurrence[{1,2,1},{1,1,3},40] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)
CoefficientList[Series[1/(1-x-2x^2-x^3),{x,0,40}],x] (* Harvey P. Dale, Oct 17 2024 *)
-
a(n)=([0,1,0; 0,0,1; 1,2,1]^n*[1;1;3])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
-
@CachedFunction
def a(n): # A002478
if (n<3): return (1,1,3)[n]
else: return sum(binomial(2,j)*a(n-j) for j in range(1,4))
[a(n) for n in (0..40)] # G. C. Greubel, Apr 14 2023
Additional comments from Silvia Heubach (silvi(AT)cine.net), Apr 21 2000
A219924
Number A(n,k) of tilings of a k X n rectangle using integer-sided square tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 6, 5, 1, 1, 1, 1, 8, 13, 13, 8, 1, 1, 1, 1, 13, 28, 40, 28, 13, 1, 1, 1, 1, 21, 60, 117, 117, 60, 21, 1, 1, 1, 1, 34, 129, 348, 472, 348, 129, 34, 1, 1, 1, 1, 55, 277, 1029, 1916, 1916, 1029, 277, 55, 1, 1
Offset: 0
A(3,3) = 6, because there are 6 tilings of a 3 X 3 rectangle using integer-sided squares:
._____. ._____. ._____. ._____. ._____. ._____.
| | | |_| |_| | |_|_|_| |_|_|_| |_|_|_|
| | |___|_| |_|___| |_| | | |_| |_|_|_|
|_____| |_|_|_| |_|_|_| |_|___| |___|_| |_|_|_|
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 3, 5, 8, 13, 21, ...
1, 1, 3, 6, 13, 28, 60, 129, ...
1, 1, 5, 13, 40, 117, 348, 1029, ...
1, 1, 8, 28, 117, 472, 1916, 7765, ...
1, 1, 13, 60, 348, 1916, 10668, 59257, ...
1, 1, 21, 129, 1029, 7765, 59257, 450924, ...
Columns (or rows) k=0+1, 2-10 give:
A000012,
A000045(n+1),
A002478,
A054856,
A054857,
A219925,
A219926,
A219927,
A219928,
A219929.
-
b:= proc(n, l) option remember; local i, k, s, t;
if max(l[])>n then 0 elif n=0 or l=[] then 1
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
else for k do if l[k]=0 then break fi od; s:=0;
for i from k to nops(l) while l[i]=0 do s:=s+
b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])
od; s
fi
end:
A:= (n, k)-> `if`(n>=k, b(n, [0$k]), b(k, [0$n])):
seq(seq(A(n, d-n), n=0..d), d=0..14);
# The following is a second version of the program that lists the actual dissections. It produces a list of pairs for each dissection:
b:= proc(n, l, ll) local i, k, s, t;
if max(l[])>n then 0 elif n=0 or l=[] then lprint(ll); 1
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l), ll)
else for k do if l[k]=0 then break fi od; s:=0;
for i from k to nops(l) while l[i]=0 do s:=s+
b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)],
[ll[],[k,1+i-k]])
od; s
fi
end:
A:= (n, k)-> b(k, [0$n], []):
A(5,5);
# In each list [a,b] means put a square with side length b at
leftmost possible position with upper corner in row a. For example
[[1,3], [4,2], [4,2], [1,2], [3,1], [3,1], [4,1], [5,1]], gives:
___.___.
| | |
| |_|
|___|_|_|
| | |_|
|_|___|_|
-
b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[Max[l] > n, 0, n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; s = 0; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s + b[n, Join[l[[1;; k-1]], Table[1+i-k, {j, k, i}], l[[i+1;; -1]] ] ] ]; s]]; a[n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from 1st Maple program *)
A054856
Number of ways to tile a 4 X n region with 1 X 1, 2 X 2, 3 X 3 and 4 X 4 tiles.
Original entry on oeis.org
1, 1, 5, 13, 40, 117, 348, 1029, 3049, 9028, 26738, 79183, 234502, 694476, 2056692, 6090891, 18038173, 53420041, 158203433, 468519406, 1387520047, 4109140098, 12169216863, 36039131181, 106729873498, 316080480394, 936072224321
Offset: 0
Silvia Heubach (silvi(AT)cine.net), Apr 21 2000
a(2)=5 as there is one tiling of a 4 X 2 region with only 1 X 1 tiles, 3 tilings with exactly one 2 X 2 tile and 1 tiling with exactly two 2 X 2 tiles.
-
a[0]:=1: a[1]:=1: a[2]:=5: a[3]:=13: a[4]:=40: for n from 5 to 26 do a[n]:=2*a[n-1]+3*a[n-2]-a[n-4]-a[n-5] od: seq(a[n],n=0..26); # Emeric Deutsch, Oct 16 2006
-
f[ A_ ] := Module[ {til = A, sum}, sum = 2* Apply[ Plus, Drop[ til, -4 ] ]; AppendTo[ til, A[ [ -1 ] ] + 4A[ [ -2 ] ] + 4A[ [ -3 ] ] + 3A[ [ -4 ] ] + sum ] ]; NumOfTilings[ n_ ] := Nest[ f, {1, 1, 5, 13}, n - 2 ]; NumOfTilings[ 30 ]
A359019
Number of inequivalent tilings of a 3 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 21, 39, 82, 163, 347, 717, 1533, 3232, 6927, 14748, 31645, 67690, 145322, 311535, 668997, 1435645, 3083301, 6619842, 14218066, 30533005, 65580338, 140847132, 302522253, 649759735, 1395611508, 2997573501, 6438470626, 13829057884, 29703388721, 63799607283, 137035047576, 294336860797, 632205714741
Offset: 0
a(4) is 6 because of:
+-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
| | | | | | | | | | | | | | | | | | |
+-+-+-+ + + + +-+ + +-+ + +-+ +-+-+-+
| | | | | | | | | | | | | | | | | |
+-+-+-+ + + +-+-+-+ +-+-+-+ +-+-+-+ + +-+
| | | | | | | | | | | | | | | | | | |
+-+-+-+ +-+-+-+ + +-+ +-+ + +-+-+-+ +-+-+-+
| | | | | | | | | | | | | | | | | | | |
+-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A359020
Number of inequivalent tilings of a 4 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 4, 6, 13, 39, 115, 295, 861, 2403, 7048, 20377, 60008, 175978, 519589, 1532455, 4531277, 13395656, 39639758, 117301153, 347248981, 1028011708, 3043852214, 9012879842, 26689014028, 79033362580, 234045889421, 693101137571, 2052569508948
Offset: 0
a(3) is 6 because of:
+-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
| | | | | | | | | | | | | | | | | | |
+-+-+-+ + + + +-+ + +-+ + +-+ +-+-+-+
| | | | | | | | | | | | | | | | | |
+-+-+-+ + + +-+-+-+ +-+-+-+ +-+-+-+ + +-+
| | | | | | | | | | | | | | | | | | |
+-+-+-+ +-+-+-+ + +-+ +-+ + +-+-+-+ +-+-+-+
| | | | | | | | | | | | | | | | | | | |
+-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A359021
Number of inequivalent tilings of a 5 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 5, 10, 39, 77, 521, 1985, 8038, 32097, 130125, 525676, 2131557, 8635656, 35017970, 141968455, 575692056, 2334344849, 9465939422, 38384559168, 155652202456, 631178976378, 2559476952229, 10378857744374, 42087027204278, 170665938023137, 692062856184512
Offset: 0
a(2) is 5 because of:
+-+-+ +-+-+ +-+-+ +-+-+ +-+-+
| | | | | | | | | | |
+-+-+ +-+-+ + + + + +-+-+
| | | | | | | | | | |
+-+-+ + + +-+-+ +-+-+ + +
| | | | | | | | | | | |
+-+-+ +-+-+ +-+-+ +-+-+ +-+-+
| | | | | | | | | | | | |
+-+-+ + + + + +-+-+ +-+-+
| | | | | | | | | | | | |
+-+-+ +-+-+ +-+-+ +-+-+ +-+-+
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A359022
Number of inequivalent tilings of a 6 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 9, 21, 115, 521, 1494, 15129, 83609, 459957, 2551794, 14150081, 78597739
Offset: 0
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A359023
Number of inequivalent tilings of a 7 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 12, 39, 295, 1985, 15129, 56978, 861159, 6542578, 49828415
Offset: 0
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A359024
Number of inequivalent tilings of an 8 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 21, 82, 861, 8038, 83609, 861159, 4495023
Offset: 0
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A359025
Number of inequivalent tilings of a 9 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 30, 163, 2403, 32097, 459957, 6542578, 93604244
Offset: 0
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
Showing 1-10 of 14 results.
Comments