cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A226545 Number A(n,k) of squares in all tilings of a k X n rectangle using integer-sided square tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 5, 3, 0, 0, 4, 12, 12, 4, 0, 0, 5, 25, 34, 25, 5, 0, 0, 6, 50, 98, 98, 50, 6, 0, 0, 7, 96, 256, 386, 256, 96, 7, 0, 0, 8, 180, 654, 1402, 1402, 654, 180, 8, 0, 0, 9, 331, 1625, 4938, 6940, 4938, 1625, 331, 9, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 10 2013

Keywords

Examples

			A(3,3) = 1 + 6 + 6 + 6 + 6 + 9 = 34:
  ._____.  ._____.  ._____.  ._____.  ._____.  ._____.
  |     |  |   |_|  |_|   |  |_|_|_|  |_|_|_|  |_|_|_|
  |     |  |___|_|  |_|___|  |_|   |  |   |_|  |_|_|_|
  |_____|  |_|_|_|  |_|_|_|  |_|___|  |___|_|  |_|_|_|
Square array A(n,k) begins:
  0, 0,   0,    0,     0,      0,       0,        0, ...
  0, 1,   2,    3,     4,      5,       6,        7, ...
  0, 2,   5,   12,    25,     50,      96,      180, ...
  0, 3,  12,   34,    98,    256,     654,     1625, ...
  0, 4,  25,   98,   386,   1402,    4938,    16936, ...
  0, 5,  50,  256,  1402,   6940,   33502,   157279, ...
  0, 6,  96,  654,  4938,  33502,  221672,  1426734, ...
  0, 7, 180, 1625, 16936, 157279, 1426734, 12582472, ...
		

Crossrefs

Columns (or rows) k=0-10 give: A000004, A001477, A067331(n-1) for n>0, A226546, A226547, A226548, A226549, A226550, A226551, A226552, A226553.
Main diagonal gives A226554.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then [0,0] elif n=0 or l=[] then [1,0]
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:=[0$2];
             for i from k to nops(l) while l[i]=0 do s:=s+(h->h+[0, h[1]])
               (b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))
             od; s
          fi
        end:
    A:= (n, k)-> `if`(n>=k, b(n, [0$k]), b(k, [0$n]))[2]:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[Max[l] > n, {0, 0}, n == 0 || l == {}, {1, 0}, Min[l] > 0, t=Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; s={0, 0}; For[i=k, i <= Length[l] && l[[i]] == 0, i++, s = s + Function[h, h+{0, h[[1]]}][b[n, Join[l[[1 ;; k-1]], Table[1+i-k, {j, k, i}], l[[i+1 ;; -1]]]]] ]; s]]; a[n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]][[2]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)

A219926 Number of tilings of a 7 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

1, 1, 21, 129, 1029, 7765, 59257, 450924, 3435392, 26160354, 199243634, 1517411733, 11556549312, 88013947545, 670309228276, 5105035683160, 38879655193542, 296105186372225, 2255119850966932, 17174861374796123, 130802743517191075, 996186073044886758
Offset: 0

Views

Author

Alois P. Heinz, Dec 01 2012

Keywords

Examples

			a(2) = 21, because there are 21 tilings of a 7 X 2 rectangle using integer-sided square tiles:
._._. .___. ._._. ._._. ._._. ._._. ._._. .___. .___. .___. .___.
|_|_| |   | |_|_| |_|_| |_|_| |_|_| |_|_| |   | |   | |   | |   |
|_|_| |___| |   | |_|_| |_|_| |_|_| |_|_| |___| |___| |___| |___|
|_|_| |_|_| |___| |   | |_|_| |_|_| |_|_| |   | |_|_| |_|_| |_|_|
|_|_| |_|_| |_|_| |___| |   | |_|_| |_|_| |___| |   | |_|_| |_|_|
|_|_| |_|_| |_|_| |_|_| |___| |   | |_|_| |_|_| |___| |   | |_|_|
|_|_| |_|_| |_|_| |_|_| |_|_| |___| |   | |_|_| |_|_| |___| |   |
|_|_| |_|_| |_|_| |_|_| |_|_| |_|_| |___| |_|_| |_|_| |_|_| |___|
._._. ._._. ._._. ._._. ._._. ._._. .___. .___. .___. ._._.
|_|_| |_|_| |_|_| |_|_| |_|_| |_|_| |   | |   | |   | |_|_|
|   | |   | |   | |_|_| |_|_| |_|_| |___| |___| |___| |   |
|___| |___| |___| |   | |   | |_|_| |   | |   | |_|_| |___|
|   | |_|_| |_|_| |___| |___| |   | |___| |___| |   | |   |
|___| |   | |_|_| |   | |_|_| |___| |   | |_|_| |___| |___|
|_|_| |___| |   | |___| |   | |   | |___| |   | |   | |   |
|_|_| |_|_| |___| |_|_| |___| |___| |_|_| |___| |___| |___|
		

Crossrefs

Column k=7 of A219924.
Cf. A226550.

Programs

  • Maple
    gf:= -(6*x^18 -x^17 -9*x^16 +13*x^15 +20*x^14 -35*x^13 -47*x^12 -76*x^11 -145*x^10 -127*x^9 -8*x^8 +64*x^7 +96*x^6 +68*x^5 +7*x^4 -10*x^3 -13*x^2 -2*x +1) / (6*x^25 +11*x^24 -9*x^23 -10*x^22 +39*x^21 +12*x^20 -70*x^19 -281*x^18 -403*x^17 -110*x^16 -118*x^15 -790*x^14 -179*x^13 +466*x^12 +327*x^11 +669*x^10 +1028*x^9 +231*x^8 -45*x^7 -284*x^6 -273*x^5 -61*x^4 +45*x^3 +31*x^2 +3*x -1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..30);

Formula

G.f.: see Maple program.
Showing 1-2 of 2 results.