A226554 Number of squares in all tilings of an n X n square using integer-sided square tiles.
0, 1, 5, 34, 386, 6940, 221672, 12582472, 1293374998, 242394178200, 83374069529638, 52845726291860344, 61928161880183204434, 134499571879749571406816, 542432658409586214809714176, 4068438590479352629770422328000, 56820656114941381799512710314429768
Offset: 0
Keywords
Programs
-
Maple
b:= proc(n, l) option remember; local i, k, s, t; if max(l[])>n then [0, 0] elif n=0 or l=[] then [1, 0] elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l)) else for k do if l[k]=0 then break fi od; s:=[0$2]; for i from k to nops(l) while l[i]=0 do s:=s+(h->h+[0, h[1]]) (b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])) od; s fi end: a:= n-> b(n, [0$n])[2]: seq(a(n), n=0..10);
-
Mathematica
b[n_, l_] := b[n, l] = Module[{i, k, s, t}, Which[Max[l] > n, {0, 0}, n == 0 || l == {}, {1, 0}, Min[l] > 0, t = Min[l]; b[n - t, l - t], True, k = Position[l, 0, 1][[1, 1]]; s = {0, 0}; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s + Function[h, h + {0, h[[1]]}][b[n, Join[l[[1;; k-1]], Table[1+i-k, {j, k, i}], l[[i+1;;]]]]]]; s]]; a[n_] := b[n, Array[0&, n]][[2]]; Table[Print[n, " ", a[n]]; a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 27 2022, after Alois P. Heinz in A226545 *)
Extensions
a(16) from Alois P. Heinz, Nov 16 2016