A226555 Numerators of row sums of the triangular enumeration of rational numbers A226314(n,k) / A054531(n,k), 1 <= k <= n.
1, 5, 4, 13, 7, 25, 10, 33, 17, 45, 16, 69, 19, 65, 38, 81, 25, 109, 28, 125, 55, 105, 34, 177, 53, 125, 68, 181, 43, 241, 46, 193, 89, 165, 100, 301, 55, 185, 106, 321, 61, 349, 64, 293, 167, 225, 70, 433, 109, 341, 140, 349, 79, 433, 162, 465, 157, 285, 88
Offset: 1
Examples
. n A226314(n,k) / A054531(n,k), 1<=k<=n<=12 row sums . -- -------------------------------------------------------- -------- . 1: 1 1 . 2: 1/2 2 5/2 . 3: 1/3 2/3 3 4 . 4: 1/4 3/2 3/4 4 13/2 . 5: 1/5 2/5 3/5 4/5 5 7 . 6: 1/6 4/3 5/2 5/3 5/6 6 25/2 . 7: 1/7 2/7 3/7 4/7 5/7 6/7 7 10 . 8: 1/8 5/4 3/8 7/2 5/8 7/4 7/8 8 33/2 . 9: 1/9 2/9 7/3 4/9 5/9 8/3 7/9 8/9 9 17 . 10: 1/10 6/5 3/10 7/5 9/2 8/5 7/10 9/5 9/10 10 45/2 . 11: 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11 11 16 . 12: 1/12 7/6 9/4 10/3 5/12 11/2 7/12 11/3 11/4 11/6 11/12 12 69/2 .
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A040001 (denominators).
Programs
-
Haskell
import Data.Ratio ((%), numerator); import Data.Function (on) a226555 n = numerator $ sum $ zipWith ((%) `on` toInteger) (a226314_row n) (a054531_row n)