cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226569 Inverse permutation to A226532.

Original entry on oeis.org

1, 2, 6, 4, 15, 3, 35, 8, 36, 30, 77, 24, 143, 70, 10, 16, 221, 72, 323, 60, 210, 154, 437, 12, 225, 286, 216, 140, 667, 5, 899, 32, 462, 442, 21, 9, 1147, 646, 858, 120, 1517, 105, 1763, 308, 540, 874, 2021, 96, 1225, 450, 1326, 572, 2491, 108, 1155, 280
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2013

Keywords

Crossrefs

Cf. A000079 (fixed points).

Programs

  • Haskell
    -- import Data.List (elemIndex); import Data.Maybe (fromJust)
    a226569 = (+ 1) . fromJust . (`elemIndex` a226532_list)
  • Maple
    f:= proc(n) local F,Fp,V,m,j,r;
      F:= ifactors(n)[2];
      Fp:= map(numtheory:-pi, F[..,1]);
      m:= max(Fp);
      V:= Vector(m);
      for j from 1 to nops(F) do V[Fp[j]]:= F[j,2] od:
      r:= ithprime(m)^V[m];
      for j from m-1 to 1 by -1 do r:= r * ithprime(j)^Bits:-Xor(V[j],V[j+1]) od;
      r
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Aug 21 2025

Formula

If k = Prod_{i=1..m} prime(i)^e(i), then a(k) = prime(m)^e(m) * Prod_{i=1..m-1} prime(i)^(e(i) xor e(i+1)). - Robert Israel, Aug 21 2025