A226571 Decimal expansion of lim_{k->oo} f(k), where f(1)=2, and f(k) = 2 - log(f(k-1)) for k>1.
1, 5, 5, 7, 1, 4, 5, 5, 9, 8, 9, 9, 7, 6, 1, 1, 4, 1, 6, 8, 5, 8, 6, 7, 2, 0, 0, 0, 0, 0, 0, 6, 6, 3, 1, 8, 0, 2, 8, 3, 7, 3, 7, 8, 7, 0, 6, 2, 6, 5, 2, 0, 3, 1, 5, 2, 8, 2, 2, 6, 6, 9, 2, 3, 0, 1, 7, 9, 8, 4, 0, 0, 7, 8, 5, 7, 9, 9, 5, 9, 2, 1, 5, 0, 9, 1
Offset: 1
Examples
2 - log 2 = 1.732378... 2 - log(2 - log 2) = 1.450504... 2 - log(2 - log(2 - log 2)) = 1.628088... limit(f(n)) = 1.557144510523...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
f[s_, accuracy_] := FixedPoint[N[s - Log[#], accuracy] &, 1] g[s_, accuracy_] := FixedPoint[N[s + Log[#], accuracy] &, 1] d1 = RealDigits[f[2, 200]][[1]] (* A226571 *) d2 = RealDigits[g[2, 200]][[1]] (* A226572 *) s /. NSolve[s - Log[s] == 2, 200] (* both constants *) h[x_] := s /. NSolve[s - Log[s] == x] Plot[h[x], {x, 1, 3}, PlotRange -> {0, 1}] (* bottom branch of h *) Plot[h[x], {x, 1, 3}, PlotRange -> {1, 5}] (* top branch *) RealDigits[LambertW[Exp[2]], 10, 50][[1]] (* G. C. Greubel, Nov 14 2017 *)
-
PARI
lambertw(exp(2)) \\ G. C. Greubel, Nov 14 2017
Formula
Equals LambertW(exp(2)). - Vaclav Kotesovec, Jan 09 2014
Extensions
Definition edited by N. J. A. Sloane, Dec 09 2017
Comments