cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226571 Decimal expansion of lim_{k->oo} f(k), where f(1)=2, and f(k) = 2 - log(f(k-1)) for k>1.

Original entry on oeis.org

1, 5, 5, 7, 1, 4, 5, 5, 9, 8, 9, 9, 7, 6, 1, 1, 4, 1, 6, 8, 5, 8, 6, 7, 2, 0, 0, 0, 0, 0, 0, 6, 6, 3, 1, 8, 0, 2, 8, 3, 7, 3, 7, 8, 7, 0, 6, 2, 6, 5, 2, 0, 3, 1, 5, 2, 8, 2, 2, 6, 6, 9, 2, 3, 0, 1, 7, 9, 8, 4, 0, 0, 7, 8, 5, 7, 9, 9, 5, 9, 2, 1, 5, 0, 9, 1
Offset: 1

Views

Author

Clark Kimberling, Jun 11 2013

Keywords

Comments

Old definition was: Decimal digits of limit(f(n)), where f(1) = 2 - log(2), f(n) = f(f(n-1)).
Let h(x) be lesser of the two solutions of s - log(s) = x; then A226571 represents h(2). The function h(x) is plotted by the Mathematica program. [This comment is wrong. A226571 = 1.5571455989976... is the unique root of the equation s + log(s) = 2. Equation s - log(s) = 2 does have two roots, but they are s = 3.14619322062... (=A226572) and s = 0.158594339563... (not A226571). - Vaclav Kotesovec, Jan 09 2014]

Examples

			2 - log 2 = 1.732378...
2 - log(2 - log 2) = 1.450504...
2 - log(2 - log(2 - log 2)) = 1.628088...
limit(f(n)) = 1.557144510523...
		

Crossrefs

Programs

  • Mathematica
    f[s_, accuracy_] := FixedPoint[N[s - Log[#], accuracy] &, 1]
    g[s_, accuracy_] := FixedPoint[N[s + Log[#], accuracy] &, 1]
    d1 = RealDigits[f[2, 200]][[1]]  (* A226571 *)
    d2 = RealDigits[g[2, 200]][[1]]  (* A226572 *)
    s /. NSolve[s - Log[s] == 2, 200]  (* both constants *)
    h[x_] := s /. NSolve[s - Log[s] == x] Plot[h[x], {x, 1, 3}, PlotRange -> {0, 1}] (* bottom branch of h *)
    Plot[h[x], {x, 1, 3}, PlotRange -> {1, 5}] (* top branch *)
    RealDigits[LambertW[Exp[2]], 10, 50][[1]] (* G. C. Greubel, Nov 14 2017 *)
  • PARI
    lambertw(exp(2)) \\ G. C. Greubel, Nov 14 2017

Formula

Equals LambertW(exp(2)). - Vaclav Kotesovec, Jan 09 2014

Extensions

Definition edited by N. J. A. Sloane, Dec 09 2017