cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A006155 Expansion of e.g.f.: 1/(2-x-exp(x)).

Original entry on oeis.org

1, 2, 9, 61, 551, 6221, 84285, 1332255, 24066691, 489100297, 11044268633, 274327080611, 7433424980943, 218208342366093, 6898241919264181, 233651576126946103, 8441657595745501019, 324052733365292875025, 13171257161208184782225, 565092918793429218839307
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A032112.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40);
    Coefficients(R!(Laplace( 1/(2-x-Exp(x)) ))); // G. C. Greubel, Jan 09 2025
    
  • Mathematica
    With[{nn=20},CoefficientList[Series[1/(2-x-E^x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 27 2018 *)
  • SageMath
    def A006155_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( 1/(2-x-exp(x)) ).egf_to_ogf().list()
    print(A006155_list(40)) # G. C. Greubel, Jan 09 2025

Formula

E.g.f.: 1/(2-x-exp(x)).
a(n) ~ n! / ((1+c) * (2-c)^(n+1)), where c = A226571 = LambertW(exp(2)). - Vaclav Kotesovec, Jun 06 2019
a(0) = 1; a(n) = n * a(n-1) + Sum_{k=0..n-1} binomial(n,k) * a(k). - Ilya Gutkovskiy, Jul 02 2020

Extensions

More terms from Ralf Stephan, Mar 12 2004

A226572 Decimal expansion of lim_{k->oo} f(k), where f(1)=2, and f(k) = 2 + log(f(k-1)) for k>1.

Original entry on oeis.org

3, 1, 4, 6, 1, 9, 3, 2, 2, 0, 6, 2, 0, 5, 8, 2, 5, 8, 5, 2, 3, 7, 0, 6, 1, 0, 2, 8, 5, 2, 1, 3, 6, 8, 2, 5, 2, 8, 8, 8, 6, 6, 2, 0, 4, 6, 1, 8, 2, 4, 8, 8, 4, 2, 6, 0, 3, 4, 6, 1, 9, 2, 9, 1, 2, 8, 6, 7, 7, 5, 1, 6, 3, 9, 8, 7, 5, 4, 8, 8, 7, 0, 7, 7, 4, 3
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2013

Keywords

Comments

Let h(x) be the greater of the two solutions of s + log(s) = x; then this sequence represents h(2). The function h(x) is plotted by the Mathematica program. [This comment is wrong. A226571 = LambertW(exp(2)) = 1.5571455989976... is the unique root of the equation s + log(s) = 2. Equation s - log(s) = 2 does have two roots, but they are s = -LambertW(-1,-exp(-2)) = 3.14619322062... (this sequence) and s = -LambertW(-exp(-2)) = 0.158594339563... (A202348, not A226571). - Vaclav Kotesovec, Jan 09 2014]
Apart from the first digit the same as A202321. - R. J. Mathar, Jun 15 2013

Examples

			2 + log 2 = 2.693147...
2 + log(2 + log 2) = 2.990710...
2 + log(2 + log(2 + log 2)) = 3.095510...
limit(f(n)) = 3.14619322062...
		

Crossrefs

Programs

  • Mathematica
    f[s_, accuracy_] := FixedPoint[N[s - Log[#], accuracy] &, 1]
    g[s_, accuracy_] := FixedPoint[N[s + Log[#], accuracy] &, 1]
    d1 = RealDigits[f[2, 200]][[1]]  (* A226571 *)
    d2 = RealDigits[g[2, 200]][[1]]  (* A226572 *)
    s /. NSolve[s - Log[s] == 2, 200]  (* both constants *)
    h[x_] := s /. NSolve[s - Log[s] == x]
    Plot[h[x], {x, 1, 3}, PlotRange -> {0, 1}] (* bottom branch of h *)
    Plot[h[x], {x, 1, 3}, PlotRange -> {1, 5}] (* top branch *)
  • PARI
    default(realprecision, 100); solve(x=3, 4, x - log(x) - 2) \\ Jianing Song, Dec 30 2018

Formula

Equals -LambertW(-1, -exp(-2)) = A202321 + 2. - Vaclav Kotesovec, Jan 09 2014

Extensions

Definition revised by N. J. A. Sloane, Dec 09 2017

A202322 Decimal expansion of x satisfying x+2=exp(-x).

Original entry on oeis.org

4, 4, 2, 8, 5, 4, 4, 0, 1, 0, 0, 2, 3, 8, 8, 5, 8, 3, 1, 4, 1, 3, 2, 7, 9, 9, 9, 9, 9, 9, 3, 3, 6, 8, 1, 9, 7, 1, 6, 2, 6, 2, 1, 2, 9, 3, 7, 3, 4, 7, 9, 6, 8, 4, 7, 1, 7, 7, 3, 3, 0, 7, 6, 9, 8, 2, 0, 1, 5, 9, 9, 2, 1, 4, 2, 0, 0, 4, 0, 7, 8, 4, 9, 0, 8, 6, 5, 9, 2, 4, 8, 1, 7, 8, 7, 3, 9, 5, 5
Offset: 0

Views

Author

Clark Kimberling, Dec 18 2011

Keywords

Comments

For many choices of u and v, there is just one value of x satisfying u*x+v=e^(-x). Guide to related sequences, with graphs included in Mathematica programs:
u.... v.... x
1.... 2.... A202322
1.... 3.... A202323
2.... 2.... A202353
2.... e.... A202354
1... -1.... A202355
1.... 0.... A030178
2.... 0.... A202356
e.... 0.... A202357
3.... 0.... A202392
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A202322, take f(x,u,v)=x+2-e^(-x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			x=-0.442854401002388583141327999999336819716262...
		

Crossrefs

Cf. A202320.

Programs

  • Mathematica
    (* Program 1:  A202322 *)
    u = 1; v = 2;
    f[x_] := u*x + v; g[x_] := E^-x
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.45, -.44}, WorkingPrecision -> 110]
    RealDigits[r]  (* A202322 *)
    (* Program 2: implicit surface of u*x+v=e^(-x) *)
    f[{x_, u_, v_}] := u*x + v - E^-x;
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 1, 2}]}, {v, 1, 3}, {u, 1, 3}];
    ListPlot3D[Flatten[t, 1]] (* for A202322 *)
    RealDigits[ ProductLog[E^2] - 2, 10, 99] // First (* Jean-François Alcover, Feb 14 2013 *)
  • PARI
    lambertw(exp(2)) - 2 \\ G. C. Greubel, Jun 10 2017

Formula

x(u,v) = W(e^(v/u)/u) - v/u, where W = ProductLog = LambertW. - Jean-François Alcover, Feb 14 2013
Equals A226571 - 2 = LambertW(exp(2))-2. - Vaclav Kotesovec, Jan 09 2014

Extensions

Digits from a(84) on corrected by Jean-François Alcover, Feb 14 2013

A052842 E.g.f. A(x) = series reversion of (1-x)*(1-exp(-x)).

Original entry on oeis.org

0, 1, 3, 23, 290, 5104, 115374, 3185972, 103946688, 3912527016, 166884627360, 7955159511672, 419106982360560, 24182042474691984, 1516563901865906880, 102717031449780063360, 7472238163167018081024
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

A simple grammar.

Examples

			E.g.f.: A(x) = x + 3*x^2/2! + 23*x^3/3! + 290*x^4/4! + 5104*x^5/5! +... which satisfies: A(x) = -log(1 - x/(1-A(x))).
		

Crossrefs

Cf. A226571.

Programs

  • Maple
    spec := [S,{C=Prod(Z,B),S=Cycle(C),B=Sequence(S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    # second Maple program:
    A052842 := proc (n) option remember; `if`(n = 0, 0, add(pochhammer(n, k)*abs(Stirling1(n, k+1)), k = 0..n-1)) end:
    seq(A052842(n), n = 0..16); # Mélika Tebni, Jun 02 2023
  • Mathematica
    CoefficientList[InverseSeries[Series[(-1 + E^(-x))*(x-1),{x,0,20}],x],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 08 2014 *)
  • Maxima
    a(n):=sum((sum((sum((stirling2(i+n-1,j)*binomial(j,j-i))/(i+n-1)!,i,0,j))*(-1)^(n+j-1)/(k-j)!,j,0,k))*(n+k-1)!,k,0,n-1); /* Vladimir Kruchinin, Feb 06 2012 */
  • PARI
    {a(n)=n!*polcoeff(serreverse((1-exp(-x+O(x^(n+2))))*(1-x)),n)} /* Paul D. Hanna, Jun 22 2011 */
    

Formula

E.g.f. satisfies: A(x) = -log(1 - x/(1-A(x))). [From Encyclopedia of Combinatorial Structures]
a(n) = sum(k=0..n-1, (sum(j=0..k, (sum(i=0..j, (stirling2(i+n-1,j)*C(j,j-i))/ (i+n-1)!))*(-1)^(n+j-1)/(k-j)!))*(n+k-1)!), n>0. - Vladimir Kruchinin, Feb 06 2012
a(n) ~ n^(n-1) * c^n / (sqrt(1+c) * exp(n) * (c-1)^(2*n-1)), where c = LambertW(exp(2)) = 1.5571455989976114... (see A226571). - Vaclav Kotesovec, Jan 08 2014
For n >= 1, a(n) = Sum_{k=0..n-1} Pochhammer(n, k)*|Stirling1(n, k+1)|. - Mélika Tebni, Jun 02 2023

Extensions

Name from a comment by Paul D. Hanna, Jun 22 2011

A226574 Decimal expansion of lim_{k->oo} f(k), where f(1)=e, and f(k) = e + log(f(k-1)) for k>1.

Original entry on oeis.org

4, 1, 3, 8, 6, 5, 1, 9, 4, 6, 4, 7, 9, 1, 2, 8, 6, 9, 3, 8, 1, 8, 7, 0, 8, 7, 5, 5, 2, 5, 2, 4, 3, 5, 4, 7, 8, 3, 4, 3, 6, 7, 4, 4, 3, 0, 4, 6, 4, 8, 5, 4, 8, 1, 1, 2, 9, 4, 4, 3, 1, 6, 3, 9, 3, 5, 4, 0, 5, 1, 8, 4, 4, 3, 6, 7, 5, 5, 3, 9, 3, 0, 4, 2, 7, 1
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2013

Keywords

Comments

Let g(x) be the greater of the two solutions of s + log(s) = x; then A226572 represents g(e). [See however the comments in A226571. - N. J. A. Sloane, Dec 09 2017]

Examples

			limit(f(n)) = 4.1386519474...
		

Crossrefs

Programs

  • Mathematica
    f[s_, accuracy_] := FixedPoint[N[s - Log[#], accuracy] &, 1]
    g[s_, accuracy_] := FixedPoint[N[s + Log[#], accuracy] &, 1]
    d1 = RealDigits[f[E, 200]][[1]]   (* A226573 *)
    d2 = RealDigits[g[E, 200]][[1]]  (* A226574 *)
  • PARI
    default(realprecision, 100); solve(x=4, 5, x - log(x) - exp(1)) \\ Jianing Song, Dec 24 2018

Formula

Equals -LambertW(-1, -exp(-e)). - Jianing Song, Dec 24 2018

Extensions

Definition revised by N. J. A. Sloane, Dec 09 2017

A226573 Decimal expansion of lim_{k->oo} f(k), where f(1)=e, and f(k) = e - log(f(k-1)) for k>1.

Original entry on oeis.org

2, 0, 1, 6, 7, 7, 9, 7, 6, 4, 8, 9, 2, 2, 0, 0, 6, 2, 4, 2, 7, 7, 7, 9, 0, 5, 5, 4, 1, 9, 4, 0, 1, 1, 7, 3, 3, 7, 7, 2, 6, 1, 7, 8, 3, 6, 7, 6, 3, 7, 0, 6, 4, 0, 2, 4, 4, 1, 0, 3, 3, 0, 7, 2, 1, 4, 2, 7, 5, 0, 5, 7, 4, 4, 9, 0, 9, 8, 9, 9, 9, 9, 1, 5, 2, 4
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2013

Keywords

Comments

Old definition was: Decimal digits of limit(f(n)), where f(1) = e-log(e), f(n) = f(f(n-1)).
Let f(x) be lesser of the two solutions of s - log(s) = x; then A226571 represents f(e). [See however the comments in A226571. - N. J. A. Sloane, Dec 09 2017]

Examples

			limit(f(n)) = 2.0167797639...
		

Crossrefs

Programs

  • Mathematica
    Program 1:
    f[s_, accuracy_] := FixedPoint[N[s - Log[#], accuracy] &, 1]
    g[s_, accuracy_] := FixedPoint[N[s + Log[#], accuracy] &, 1]
    d1 = RealDigits[f[E, 200]][[1]]  (* A226573 *)
    d2 = RealDigits[g[E, 200]][[1]]  (* A226574 *)
    s /. NSolve[s - Log[s] == 2, 200] (* both constants *)
    ***
    Program 2:
    N[ProductLog[E^E], 100] (* Clark Kimberling, Feb 15 2018 *)
  • PARI
    default(realprecision, 100); lambertw(exp(exp(1))) \\ G. C. Greubel, Sep 09 2018

Formula

Equals LambertW(e^e). - Clark Kimberling, Feb 15 2018

Extensions

Definition revised by N. J. A. Sloane, Dec 09 2017

A032182 "CIJ" (necklace, indistinct, labeled) transform of 2,1,1,1...

Original entry on oeis.org

2, 5, 23, 156, 1409, 15908, 215529, 3406770, 61542033, 1250700672, 28241802929, 701494286870, 19008349975497, 557990502346020, 17639808964667241, 597481099591875594, 21586547569205365409, 828650020968205107752, 33680822283049282596225
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A226571.

Formula

E.g.f.: A(x) = log(1/(2-x-exp(x))). - Sean A. Irvine, May 28 2020
a(n) ~ (n-1)! / (2 - LambertW(exp(2)))^n. - Vaclav Kotesovec, May 29 2020

Extensions

More terms from Sean A. Irvine, May 28 2020

A207493 E.g.f. A(x) is the series reversion of 2*x-1/2*x^2-exp(x)+1.

Original entry on oeis.org

1, 2, 13, 141, 2141, 41798, 997340, 28124253, 915095222, 33744966795, 1390772973547, 63353273661835, 3160751396077900, 171405094563763674, 10038777321831260503, 631498191927510881178, 42464602911622645539047, 3039724643022777390236243
Offset: 1

Views

Author

Vladimir Kruchinin, Feb 18 2012

Keywords

Crossrefs

Cf. A226571.

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[2*x-1/2*x^2-E^x+1, {x, 0, 20}], x],x]*Range[0, 20]!] (* Vaclav Kotesovec, Jan 22 2014 *)
  • Maxima
    a(n):=(sum((n+k-1)!*sum(1/(k-j)!*sum(1/l!*sum(((-1)^(i+l)*2^(l-2*i) *binomial(l,i)*stirling2(n+j-i-l-1,j-l))/(n+j-i-l-1)!, i,0,l), l,0,j), j,0,k), k,0,n-1));

Formula

a(n) = (sum(k=0..n-1, (n+k-1)!*sum(j=0..k, 1/(k-j)!*sum(l=0..j, 1/l!*sum(i=0..l, ((-1)^(i+l)*2^(l-2*i)* C(l,i)*stirling2(n+j-i-l-1,j-l))/(n+j-i-l-1)!))))).
a(n) ~ n^(n-1) / (sqrt(1+c) * exp(n) * (3-c*(2+c)/2)^(n-1/2)), where c = LambertW(exp(2)) = 1.5571455989976... (see A226571). - Vaclav Kotesovec, Jan 22 2014
Showing 1-8 of 8 results.