A226586 Odd values of sigma(n) - phi(n) in the order of appearance and with repetition.
5, 11, 7, 23, 33, 11, 47, 79, 15, 73, 95, 171, 67, 129, 177, 23, 191, 355, 309, 27, 315, 385, 283, 289, 383, 723, 35, 739, 393, 39, 687, 801, 489, 1089, 711, 767, 47, 1459, 649, 281, 1599, 969, 801, 607, 1431, 1633, 59, 1971, 2581, 63, 1555, 1535, 1153, 1069, 2931, 1605, 927, 1843, 3319, 2121
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
select(type, [seq(numtheory:-sigma(n)-numtheory:-phi(n), n=1..2000)], odd); # Robert Israel, Aug 11 2019
-
Mathematica
Select[Table[DivisorSigma[1,n]-EulerPhi[n],{n,2000}],OddQ] (* Harvey P. Dale, Sep 27 2013 *)
Formula
sigma(4) - phi(4) = 7 - 2 = 5. Since 5 is the first odd value of sigma(n) - phi(n), it appears first in the list. So a(1) = 5.
Comments