cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226602 Number of ordered triples (i,j,k) with i*j*k = n, i,j,k >= 0 and gcd(i,j,k) <= 1.

Original entry on oeis.org

1, 1, 3, 3, 6, 3, 9, 3, 9, 6, 9, 3, 18, 3, 9, 9, 12, 3, 18, 3, 18, 9, 9, 3, 27, 6, 9, 9, 18, 3, 27, 3, 15, 9, 9, 9, 36, 3, 9, 9, 27, 3, 27, 3, 18, 18, 9, 3, 36, 6, 18, 9, 18, 3, 27, 9, 27, 9, 9, 3, 54, 3, 9, 18, 18, 9, 27, 3, 18, 9, 27, 3, 54, 3, 9, 18, 18
Offset: 0

Views

Author

Robert Price, Jun 13 2013

Keywords

Comments

Note that gcd(0,m) = m for any m.
a(n) is the number of cubefree divisors summed over the divisors of n. In other words, a(n) = Sum_{d|n} A073184(d). - Geoffrey Critzer, Mar 20 2015

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, t, g) option remember; `if`(t=0,
          `if`(igcd(n, g)=1, 1, 0), add(b(n/d, t-1,
          igcd(g, d)), d=divisors(n)))
        end:
    a:= n-> `if`(n=0, 1, b(n, 2, 0)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 20 2015
  • Mathematica
    f[n_] := Length[Complement[Union[Flatten[Table[If[i*j*k == n && GCD[i, j, k] <= 1, {i, j, k}], {i, 0,n}, {j, 0, n}, {k, 0, n}], 2]], {Null}]]; Table[f[n], {n, 0, 100}]
    a[0] = a[1] = 1; a[n_] := Times @@ (3 * Last[#] & /@ FactorInteger[n]); Array[a, 100, 0] (* Amiram Eldar, Sep 14 2020 *)
  • Python
    from math import prod
    from sympy import factorint
    def A226602(n): return prod(3*e for e in factorint(n).values()) if n else 1 # Chai Wah Wu, Dec 26 2022

Formula

From Geoffrey Critzer, Mar 20 2015: (Start)
If n = p_1^e_1*p_2^e_2*...*p_r^e_r then a(n) = Product_{i=1..r} 3*e_i.
Dirichlet g.f.: zeta(s)^3/zeta(3*s). (End)
From Werner Schulte, May 13 2018: (Start)
Multiplicative with a(p^e) = 3*e, p prime and e>0.
Dirichlet inverse b(n), n>0, is multiplicative with b(1) = 1, and for p prime and e>0: b(p^e)=0 if e mod 3 = 0 otherwise b(p^e)=3*(-1)^(e mod 3).
Dirichlet convolution with A007427(n) yields A212793(n).
Dirichlet convolution with A008836(n) yields A092520(n).
Equals Dirichlet convolution of A034444(n) and A056624(n).
Equals Dirichlet convolution of A000005(n) and A212793(n). (End)
Sum_{k=1..n} a(k) ~ n/(2*Zeta(3)) * (log(n)^2 + 2*log(n) * (-1 + 3*gamma - 3*Zeta'(3)/Zeta(3)) + 2 + 6*gamma^2 - 6*sg1 + 6*Zeta'(3)/Zeta(3) + 18*Zeta'(3)^2/Zeta(3)^2 - 6*gamma*(1 + 3*Zeta'(3)/Zeta(3)) - 9*Zeta''(3)/Zeta(3)), where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Feb 07 2019
a(n) = A005361(n) * A074816(n). - Vaclav Kotesovec, Feb 27 2023