A226729 G.f.: 1 / G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+2) ).
1, 1, 2, 4, 8, 17, 36, 76, 162, 345, 734, 1564, 3332, 7098, 15124, 32224, 68658, 146291, 311704, 664152, 1415124, 3015237, 6424636, 13689132, 29167776, 62148513, 132421414, 282153672, 601192008, 1280975135, 2729406380, 5815615784, 12391480916, 26402844538, 56257214530, 119868682488
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(2*Range[nmax + 1] - 2*Floor[Range[nmax + 1]/2] - 1)]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 05 2017 *)
-
PARI
N = 66; q = 'q + O('q^N); G(k) = if(k>N, 1, 1 - q^(k+1) / (1 - q^(k+1) / G(k+2) ) ); gf = 1 / G(0) Vec(gf)
Formula
G.f.: 1/(1-q/(1-q/(1-q^3/(1-q^3/(1-q^5/(1-q^5/(1-q^7/(1-q^7/(1-...))))))))).
G.f.: 1/W(0), where W(k)= 1 - x^(2*k+1)/(1 - x^(2*k+1)/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 16 2013
a(n) ~ c * d^n, where d = 2.13072551790181698200128321720925945740967671226348407873633962907725871... and c = 0.38040216799237980431596440625527448705929594287571043849218282414099437... - Vaclav Kotesovec, Sep 05 2017
Conjecture: a(n) = Sum_{i=0..floor((n-sqrt(2*n-1))/2)} A129183(n-(2*i),n-i). - John Tyler Rascoe, Nov 04 2023
Comments