cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226729 G.f.: 1 / G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+2) ).

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 36, 76, 162, 345, 734, 1564, 3332, 7098, 15124, 32224, 68658, 146291, 311704, 664152, 1415124, 3015237, 6424636, 13689132, 29167776, 62148513, 132421414, 282153672, 601192008, 1280975135, 2729406380, 5815615784, 12391480916, 26402844538, 56257214530, 119868682488
Offset: 0

Views

Author

Joerg Arndt, Jun 29 2013

Keywords

Comments

What does this sequence count?
Conjectures from John Tyler Rascoe, Nov 04 2023: (Start)
a(n) is the number of integer compositions of n into two kinds of odd parts with the following restrictions. Each composition has first part 1a. For all a parts pa_i >= px_{i+1} and for all b parts pb_i >= px_{i+1} or pb_i = (p+2)a_{i+1}.
In general if B(i) = b_1, b_2, ..., b_i is an infinite sequence where b_1 > 0 and b_i <= b_{i+1} for all i, let A(q) = 1/(1-q^b_1/(1-q^b_2/(1-q^b_3/(1-...)))) be a generating function where the exponents of q are the sequence B(i).
Then A(q) counts integer compositions into parts b_i with the following restrictions. Every composition has first part p_1 = b_1 and for every pair of parts (p_j,p_{j+1}), B^-1(p_j) + 1 >= B^-1(p_{j+1}). Where j is the position of the part p_j within the composition itself and B^-1(p_j) is the index of p_j in B(i). (End)

Crossrefs

Cf. A226728 (g.f.: 1/G(0), G(k) = 1 + q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A227309 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+2)/G(k+1) ) ).
Cf. A129183.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(2*Range[nmax + 1] - 2*Floor[Range[nmax + 1]/2] - 1)]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 05 2017 *)
  • PARI
    N = 66;  q = 'q + O('q^N);
    G(k) = if(k>N, 1, 1 - q^(k+1) / (1 - q^(k+1) / G(k+2) ) );
    gf = 1 / G(0)
    Vec(gf)

Formula

G.f.: 1/(1-q/(1-q/(1-q^3/(1-q^3/(1-q^5/(1-q^5/(1-q^7/(1-q^7/(1-...))))))))).
G.f.: 1/W(0), where W(k)= 1 - x^(2*k+1)/(1 - x^(2*k+1)/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 16 2013
a(n) ~ c * d^n, where d = 2.13072551790181698200128321720925945740967671226348407873633962907725871... and c = 0.38040216799237980431596440625527448705929594287571043849218282414099437... - Vaclav Kotesovec, Sep 05 2017
Conjecture: a(n) = Sum_{i=0..floor((n-sqrt(2*n-1))/2)} A129183(n-(2*i),n-i). - John Tyler Rascoe, Nov 04 2023