A226737 a(n) = 11^n + n.
1, 12, 123, 1334, 14645, 161056, 1771567, 19487178, 214358889, 2357947700, 25937424611, 285311670622, 3138428376733, 34522712143944, 379749833583255, 4177248169415666, 45949729863572177, 505447028499293788, 5559917313492231499, 61159090448414546310, 672749994932560009221
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Index entries for linear recurrences with constant coefficients, signature (13,-23,11).
Crossrefs
Programs
-
Magma
[11^n+n: n in [0..30]];
-
Magma
I:=[1, 12, 123]; [n le 3 select I[n] else 13*Self(n-1)-23*Self(n-2)+11*Self(n-3): n in [1..30]];
-
Mathematica
Table[11^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(- 1 + x + 10 x^2) / ((11 x - 1) (x - 1)^2), {x, 0, 30}], x] LinearRecurrence[{13,-23,11},{1,12,123},20] (* Harvey P. Dale, Nov 14 2018 *)
-
PARI
a(n)=11^n+n \\ Charles R Greathouse IV, Oct 07 2015
Formula
G.f.: (-1+x+10*x^2)/((11*x-1)*(x-1)^2).
a(n) = 13*a(n-1) - 23*a(n-2) + 11*a(n-3).
E.g.f.: exp(x)*(exp(10*x) + x). - Elmo R. Oliveira, Mar 06 2025