cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226742 Triangular numbers obtained as the concatenation of 2*k and k.

Original entry on oeis.org

21, 105, 2211, 9045, 222111, 306153, 742371, 890445, 1050525, 22221111, 88904445, 107905395, 173808690, 2222211111, 8889044445, 12141260706, 15754278771, 222222111111, 888890444445, 22222221111111, 36734701836735, 65306123265306
Offset: 1

Views

Author

Antonio Roldán, Jun 18 2013

Keywords

Comments

Includes (2*10^k+1)*(10^k-1)/9 and (2*10^k+1)*(4*10^k+5)/9 for k >= 1. - Robert Israel, Feb 06 2025

Examples

			If k=111, 2k=222, 2k//k = 222111 = 666*667/2, a triangular number.
		

Crossrefs

Programs

  • Maple
    g:= proc(d) local a, b, n, Res, x, y;
          Res:= NULL:
          for a in numtheory:-divisors(2*(2*10^d+1)) do
            b:= 2*(2*10^d+1)/a;
            if igcd(a, b)>1 then next fi;
            n:= chrem([0, -1], [a, b]);
            x:= n*(n+1)/2;
            y:= x/(2*10^d+1);
            if y < 10^(d-1) or y >= 10^d  then next fi;
            Res:= Res, (2*10^d+1)*y
          od;
          op(sort([Res]))
    end proc:
    map(g, [$1..10]); # Robert Israel, Feb 06 2025
  • Mathematica
    TriangularQ[n_] := IntegerQ[Sqrt[1 + 8*n]]; t = {}; Do[s = FromDigits[Join[IntegerDigits[2*n], IntegerDigits[n]]]; If[TriangularQ[s], AppendTo[t, s]], {n, 100000}]; t (* T. D. Noe, Jun 18 2013 *)
  • PARI
    concatint(a,b)=eval(concat(Str(a),Str(b)))
    istriang(x)=issquare(8*x+1)
    {for(n=1,10^5,a=concatint(2*n,n);if(istriang(a),print(a)))}