cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226755 Numbers of the form p*q, p and q prime with q=2p-3.

Original entry on oeis.org

9, 35, 77, 209, 299, 527, 989, 1829, 2627, 3239, 3569, 5459, 8777, 9869, 13529, 18527, 20099, 22577, 25199, 31877, 37127, 48827, 55277, 64979, 72389, 73919, 88409, 98789, 107879, 115439, 125249, 137549, 159329, 192509, 200027, 218129, 239777, 277139, 353219
Offset: 1

Views

Author

Keywords

Comments

The smaller prime factor of a(n) = p = sopf(a(n))/3 + 1. The larger prime factor of a(n) = q = 2*sopf(a(n))/3 - 1. Furthermore, 2(sopf(a(n))/3 + 1) is representable as the sum of two primes in at least two ways since 2p = p + p = 3 + q. - Wesley Ivan Hurt, Jun 30 2013

Crossrefs

Programs

  • Mathematica
    fa = FactorInteger; t[n_]:=Length[fa[n]] == 2 && fa[n][[1,2]]== fa[n][[2, 2]] == 1 && 2 fa[n][[1, 1]]-3 == fa[n][[2, 1]]; Select[1+Range[200000], t]
  • PARI
    list(lim)=my(v=List(), q); forprime(p=2, (sqrt(8*lim+9)+3)\4, if(isprime(q=2*p-3), listput(v, p*q))); Vec(v) \\ Charles R Greathouse IV, Nov 19 2013

Extensions

a(1) added by Charles R Greathouse IV, Nov 19 2013