A226754
Numbers of the form p*q, p and q prime with q=2*p+3.
Original entry on oeis.org
14, 65, 119, 377, 629, 779, 1769, 3827, 4559, 5777, 9179, 10877, 16109, 19109, 25877, 32639, 37949, 39059, 49769, 56279, 60377, 75077, 78209, 79799, 100127, 103739, 105569, 145529, 154289, 161027, 189419, 228149, 244649, 250277, 288419, 294527, 316409, 335789
Offset: 1
-
fa = FactorInteger; t[n_]:=Length[fa[n]] == 2 && fa[n][[1,2]]== fa[n][[2, 2]] == 1 && 2 fa[n][[1, 1]]+3 == fa[n][[2, 1]];Select[1+Range[200000], t]
Times@@#&/@Select[Table[{p,2p+3},{p,Prime[Range[200]]}],PrimeQ[#[[2]]]&] (* Harvey P. Dale, Jul 03 2021 *)
-
list(lim)=my(v=List(),q); forprime(p=2,(sqrt(8*lim+9)-3)\4, if(isprime(q=2*p+3),listput(v,p*q))); Vec(v) \\ Charles R Greathouse IV, Nov 19 2013
A338486
Numbers n whose symmetric representation of sigma(n) consists of 3 regions with maximum width 2.
Original entry on oeis.org
15, 35, 45, 70, 77, 91, 110, 130, 135, 143, 154, 170, 182, 187, 190, 209, 221, 225, 238, 247, 266, 286, 299, 322, 323, 350, 374, 391, 405, 418, 437, 442, 493, 494, 506, 527, 550, 551, 572, 589, 598, 638, 646, 650, 667, 682, 703, 713, 748, 754, 782, 806, 814, 836, 850
Offset: 1
a(6) = 91 = 7*13 is in the sequence and in the 2-column of the first table since 1 < 2 < 7 < 13 = row(91) representing the 4 odd divisors 1 - 91 - 7 - 13 (see A237048) results in the following pattern for the widths of the legs (see A249223): 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2 for 3 regions with width not exceeding 2. It also is in the 1-column of the second table since it has a single area of width 2 which is 1 unit long.
a(29) = 405 = 5*3^4 is in the sequence and in the 5-column of the first table since 1 < 2 < 3 < 5 < 6 < 9 < 10 < 15 < 18 < 27 = row(405) representing the 10 odd divisors 1 - 405 - 3 - 5 - 135 - 9 - 81 - 15 - 45 - 27 results in the following pattern for the widths of the legs: 1, 0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2 for 3 regions with width not exceeding 2, and 7 = 2*4 - 1 sections of width 2 in the central region.
a(35) = 506 = 2*11*23 is in the sequence since positions 1 < 4 < 11 < 23 < row(506) = 31 representing the 4 odd divisors 1 - 253 - 11 - 23 results in the following pattern for the widths of the legs: 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2 for 3 regions with width not exceeding 2, with the two outer regions consisting of 3 legs of width 1, and a single area of width 2 in the central region.
Cf.
A001248,
A005030,
A048473,
A082663,
A087718,
A129521,
A196020,
A226755,
A235791,
A237048,
A237270,
A237271,
A237591,
A237593,
A247687,
A249223,
A279102,
A280107,
A280851.
-
(* Functions path and a237270 are defined in A237270 *)
maxDiagonalLength[n_] := Max[Map[#[[1]]-#[[2]]&, Transpose[{Drop[Drop[path[n], 1], -1], path[n-1]}]]]
a338486[m_, n_] := Module[{r, list={}, k}, For[k=m, k<=n, k++, r=a237270[k]; If[Length[r]== 3 && maxDiagonalLength[k]==2,AppendTo[list, k]]]; list]
a338486[1, 850]
Showing 1-2 of 2 results.
Comments