A226774 Integers a(n) = Sum_{i=1..q} 1/d(i) where d(i) are the divisors of A225110(n) for some q.
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1
Keywords
Examples
a(16) = 3 because the divisors of A225110(16) = 180 are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180 and 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/9 + 1/10 + 1/12 + 1/15 + 1/18 + 1/20 + 1/30 + 1/36 + 1/45 = 3.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Crossrefs
Cf. A225110.
Programs
-
Maple
with(numtheory): for n from 1 to 2000 do:x:=divisors(n):n1:=nops(x):s:=0:ii:=0:for q from 1 to n1 while(ii=0) do:s:=s+1/x[q]:if s=floor(s) and q>1 then ii:=1: printf(`%d, `, s):else fi:od:od:
-
PARI
either_A226774_or_0(n) = { if(1==n,return(1)); my(divs=divisors(n),s=0); for(i=1,#divs,s += (1/divs[i]); if((1==denominator(s))&&(i>1),return(s))); return(0); }; up_to = 16384; i=0; n=0; while(i
A226774_or_0(n); if(s, i++; write("b226774.txt", i, " ", s))); \\ Antti Karttunen, Dec 16 2017
Comments