A226777 Higher powers that are sums of two distinct higher powers.
243, 2744, 6561, 177147, 185193, 474552, 614656, 810000, 941192, 1124864, 1419857, 1500625, 3241792, 4782969, 7962624, 11239424, 16003008, 17850625, 21952000, 26873856, 28372625, 52200625, 68574961, 82312875, 117649000, 129140163, 162771336, 200201625, 238328000
Offset: 1
Keywords
Examples
243 is in the sequence because 243 = 3^5 = 3^3 + 6^3.
Links
- Robert Israel and Reinhard Zumkeller, Table of n, a(n) for n = 1..1000 (first 264 terms from Robert Israel)
Programs
-
Haskell
import qualified Data.Set as Set (null, split, filter) import Data.Set (Set, empty, insert, member) a226777 n = a226777_list !! (n-1) a226777_list = f a076467_list empty where f (x:xs) s | Set.null $ Set.filter ((`member` s) . (x -)) s' = f xs (x `insert` s) | otherwise = x : f xs (x `insert` s) where (s', _) = Set.split (x `div` 2) s -- Reinhard Zumkeller, Sep 13, Jun 19 2013
-
Maple
N := 10^12: # to get terms up to N S := {seq(seq(a^x, a=1 .. floor(N^(1/x))), x = 3 .. floor(log[2](N)))}: f:= proc(n) local L; L:= S[1..n-1] minus {S[n]/2}; nops(map2(`-`,S[n],L) intersect L) > 0 end proc; A:= map(t -> S[t], select(f,[$1..nops(S)]));
-
Mathematica
max = 3*10^8; pp = Join[{1}, Table[n^k, {k, 3, Floor[Log[2, max]]}, {n, 2, Floor[max^(1/k)]}] // Flatten // Union]; Select[Total /@ Subsets[pp, {2}], MemberQ[pp, #]&] // Union (* Jean-François Alcover, Feb 14 2018 *)
Comments