A226835 Triangle whose n-th row has the smallest n 3-almost primes in an arithmetic progression.
8, 8, 12, 12, 20, 28, 20, 44, 68, 92, 20, 44, 68, 92, 116, 402, 410, 418, 426, 434, 442, 266, 370, 474, 578, 682, 786, 890, 266, 370, 474, 578, 682, 786, 890, 994, 1270, 1414, 1558, 1702, 1846, 1990, 2134, 2278, 2422, 1394, 1586, 1778, 1970, 2162, 2354, 2546, 2738, 2930, 3122
Offset: 1
Examples
Triangle: 8, 8, 12, 12, 20, 28, 20, 44, 68, 92, 20, 44, 68, 92, 116, 402, 410, 418, 426, 434, 442, 266, 370, 474, 578, 682, 786, 890, 266, 370, 474, 578, 682, 786, 890, 994, 1270, 1414, 1558, 1702, 1846, 1990, 2134, 2278, 2422, 1394, 1586, 1778, 1970, 2162, 2354, 2546, 2738, 2930, 3122
Crossrefs
Cf. A226833 (similar triangle of semiprimes).
Programs
-
Mathematica
TriPrimeQ[n_Integer] := If[Abs[n] < 2, False, (3 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; p3 = Select[Range[4000], TriPrimeQ]; nn = Length[p3]; t = {}; n = 0; last = 1; While[n++; found = False; last = n; While[k = last - 1; p3Short = Take[p3, last]; While[d = p3[[last]] - p3[[k]]; nums = Table[p3[[last]] - i*d, {i, 0, n - 1}]; int = Intersection[nums, p3Short]; nums[[-1]] > 0 && Length[int] < n, k--]; nums[[-1]] <= 0 && last < nn, last++]; If[last < nn, AppendTo[t, Reverse[nums]]]; last < nn]; t
Comments