cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226835 Triangle whose n-th row has the smallest n 3-almost primes in an arithmetic progression.

Original entry on oeis.org

8, 8, 12, 12, 20, 28, 20, 44, 68, 92, 20, 44, 68, 92, 116, 402, 410, 418, 426, 434, 442, 266, 370, 474, 578, 682, 786, 890, 266, 370, 474, 578, 682, 786, 890, 994, 1270, 1414, 1558, 1702, 1846, 1990, 2134, 2278, 2422, 1394, 1586, 1778, 1970, 2162, 2354, 2546, 2738, 2930, 3122
Offset: 1

Views

Author

T. D. Noe and Jonathan Vos Post, Jun 30 2013

Keywords

Comments

Note that this triangle (at least for all n <= 29) is twice A226833, which is the similar triangle of semiprimes.

Examples

			Triangle:
8,
8,    12,
12,   20,   28,
20,   44,   68,   92,
20,   44,   68,   92,   116,
402,  410,  418,  426,  434,  442,
266,  370,  474,  578,  682,  786,  890,
266,  370,  474,  578,  682,  786,  890,  994,
1270, 1414, 1558, 1702, 1846, 1990, 2134, 2278, 2422,
1394, 1586, 1778, 1970, 2162, 2354, 2546, 2738, 2930, 3122
		

Crossrefs

Cf. A226833 (similar triangle of semiprimes).

Programs

  • Mathematica
    TriPrimeQ[n_Integer] := If[Abs[n] < 2, False, (3 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; p3 = Select[Range[4000], TriPrimeQ]; nn = Length[p3]; t = {}; n = 0; last = 1; While[n++; found = False; last = n; While[k = last - 1; p3Short = Take[p3, last]; While[d = p3[[last]] - p3[[k]]; nums = Table[p3[[last]] - i*d, {i, 0, n - 1}]; int = Intersection[nums, p3Short]; nums[[-1]] > 0 && Length[int] < n, k--]; nums[[-1]] <= 0 && last < nn, last++]; If[last < nn, AppendTo[t, Reverse[nums]]]; last < nn]; t