cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226857 Numbers that are both the sum of two Fibonacci numbers and the product of two Fibonacci numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 13, 15, 16, 21, 24, 26, 34, 39, 42, 55, 63, 68, 89, 102, 110, 144, 165, 178, 233, 267, 288, 377, 432, 466, 610, 699, 754, 987, 1131, 1220, 1597, 1830, 1974, 2584, 2961, 3194, 4181, 4791, 5168, 6765, 7752, 8362, 10946, 12543, 13530
Offset: 1

Views

Author

Alonso del Arte, Jun 19 2013

Keywords

Comments

All Fibonacci numbers are in the sequence. The only prime numbers in this sequence are prime Fibonacci numbers.

Examples

			5 + 21 = 2 * 13 = 26, therefore 26 is in the sequence.
8 + 21 = 1 * 34 = 34, therefore 34 is in the sequence.
5 + 34 = 3 * 13 = 39, therefore 39 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    t = Fibonacci[Range[0, 25]]; t1 = Select[Union[Flatten[Table[a + b, {a, t}, {b, t}]]], # <= t[[-1]] &]; t2 = Select[Union[Flatten[Table[a*b, {a, t}, {b, t}]]], # <= t[[-1]] &]; Intersection[t1, t2] (* T. D. Noe, Jul 03 2013 *)

Formula

Conjecture: a(n) = a(n-3)+a(n-6) for n>12. - Colin Barker, Nov 09 2014
Empirical g.f.: -x^2*(x^10 +x^9 +x^8 +2*x^7 +3*x^6 +3*x^5 +3*x^4 +3*x^3 +3*x^2 +2*x +1) / (x^6 +x^3 -1). - Colin Barker, Nov 09 2014