cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226859 Number of prime sums in the process described in A226770.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 3, 1, 3, 2, 3, 1, 4, 1, 4, 2, 5, 1, 5, 1, 6, 3, 7, 1, 6, 1, 7, 4, 7, 3, 8, 1, 9, 4, 9, 1, 9, 1, 9, 4, 10, 1, 9, 2, 10, 2, 11, 1, 11, 2, 13, 5, 14, 1, 13, 1, 12, 5, 12, 5, 13, 1, 13, 6, 14, 1, 14, 1, 13, 6, 14, 7, 15, 1, 15, 3, 15
Offset: 1

Views

Author

Vladimir Shevelev, Jun 20 2013

Keywords

Examples

			Let n=76. We have 77; d=7,11; 76+7=83 (prime), 76+11=87; d=3,29; 76+3=79(prime), 76+29=105; d=5,15,21,35; 76+5=81, 76+15=91, 76+21=97(prime), 76+35=111; d=9,27,13,37, 76+9=85,76+27=103(prime),76+13=89(prime), 76+37=113(prime), d=17, 76+17=93; d=31, 76+31=107(prime). Thus the set of prime sums is {83,79,97,103,89,113,107} and therefore a(76)=7.
		

Crossrefs

Programs

Formula

a(n) = 1 iff either n = 5 or n + 1 = p or n + 1 = q^2, where p,q and q^2+q-1 are primes.

Extensions

More terms from Peter J. C. Moses, Jun 20 2013