A226859 Number of prime sums in the process described in A226770.
1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 3, 1, 3, 2, 3, 1, 4, 1, 4, 2, 5, 1, 5, 1, 6, 3, 7, 1, 6, 1, 7, 4, 7, 3, 8, 1, 9, 4, 9, 1, 9, 1, 9, 4, 10, 1, 9, 2, 10, 2, 11, 1, 11, 2, 13, 5, 14, 1, 13, 1, 12, 5, 12, 5, 13, 1, 13, 6, 14, 1, 14, 1, 13, 6, 14, 7, 15, 1, 15, 3, 15
Offset: 1
Keywords
Examples
Let n=76. We have 77; d=7,11; 76+7=83 (prime), 76+11=87; d=3,29; 76+3=79(prime), 76+29=105; d=5,15,21,35; 76+5=81, 76+15=91, 76+21=97(prime), 76+35=111; d=9,27,13,37, 76+9=85,76+27=103(prime),76+13=89(prime), 76+37=113(prime), d=17, 76+17=93; d=31, 76+31=107(prime). Thus the set of prime sums is {83,79,97,103,89,113,107} and therefore a(76)=7.
Links
- Peter J. C. Moses, Table of n, a(n) for n = 1..2000
Programs
-
Mathematica
Table[(div=Most[Divisors[n+1]]; Count[n+FixedPoint[Union[Flatten[AppendTo[div, Map[Most[Divisors[n+#]]&, #]]]]&, div],?PrimeQ]),{n,50}] (* _Peter J. C. Moses, Jun 20 2013 *)
Formula
a(n) = 1 iff either n = 5 or n + 1 = p or n + 1 = q^2, where p,q and q^2+q-1 are primes.
Extensions
More terms from Peter J. C. Moses, Jun 20 2013