cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A226899 Numbers n for which Delta(m) < Delta(n) for all m < n, where Delta is Hooley's Delta function A226898.

Original entry on oeis.org

1, 2, 12, 24, 120, 180, 360, 720, 1260, 2520, 5040, 10080, 15120, 27720, 30240, 50400, 55440, 65520, 83160, 110880, 166320, 221760, 277200, 332640, 360360, 554400, 665280, 720720, 1441440, 2162160, 3603600, 4324320, 7207200, 8648640, 10810800, 14414400, 21621600
Offset: 1

Views

Author

Keywords

Comments

Not a subsequence of A025487: a(18) = 65520 = 2^4 * 3^2 * 5 * 7 * 13, a(46) = 136936800 = 2^5 * 3^2 * 5^2 * 7 * 11 * 13 * 19, and a(50) = 273873600 = 2^6 * 3^2 * 5^2 * 7 * 11 * 13 * 19. - Charles R Greathouse IV, Mar 12 2018

Crossrefs

Programs

  • PARI
    Delta(n)=my(d=divisors(n),r,t); for(i=1,#d\2, t=setsearch(d,d[i]*exp(1)\1, 1); t=if(t, t-i, setsearch(d, d[i]*exp(1)\1)+1-i); if(t>r,r=t)); r
    r=0; for(n=1,1e9, t=Delta(n); if(t>r, r=t; print1(n", ")))

A226900 Record values of Hooley's Delta function A226898.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 31, 32, 33, 34, 39, 44, 48, 51, 55, 60, 62, 66, 69, 77, 80, 83, 88, 91, 92, 98, 100, 106, 107, 111, 118, 121, 122, 124, 137, 138, 142, 150, 156
Offset: 1

Views

Author

Keywords

References

  • C. Hooley, On a new technique and its applications to the theory of numbers, Proc. London Math. Soc. 3 38:1 (1979), pp. 115-151.

Crossrefs

Programs

  • PARI
    Delta(n)=my(d=divisors(n), m=1); for(i=1, #d-1, my(t=exp(1)*d[i]); m=max(sum(j=i, #d, d[j]r,r=t;print1(t", ")))

Extensions

a(38)-a(54) from Charles R Greathouse IV, Jun 24 2013
a(55)-a(56) from Charles R Greathouse IV, Jul 01 2013

A309278 Index of first occurrence of n in the Erdös-Hooley Delta function A226898, with a(0)=0.

Original entry on oeis.org

0, 1, 2, 12, 24, 120, 180, 360, 720, 1260, 2880, 3780, 2520, 9240, 5040, 10080, 18480, 15120, 27720, 30240, 50400, 55440, 65520, 83160, 151200, 110880, 240240, 166320, 221760, 277200, 388080, 332640, 360360, 554400, 665280, 786240, 997920, 831600, 942480, 720720, 1995840
Offset: 0

Views

Author

Robert G. Wilson v, Jul 20 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{ds = Divisors@n, k = 1, mx = 0}, len = Length@ds; While[k < len, a = Length@Select[Take[ds, {k, len}], ds[[k]]*E > # &]; If[a > mx, mx = a]; k++]; mx]; f[1] = 1; t[_] := 0; k = 1; While[k < 10^5, a = f@k; If[ t[a] == 0, t[a] = k]; k++]; t@# & /@ Range[0, 23]

A226901 Partial sums of Hooley's Delta function.

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 19, 20, 22, 24, 26, 27, 29, 30, 33, 35, 37, 38, 42, 43, 45, 46, 48, 49, 52, 53, 55, 56, 58, 60, 63, 64, 66, 67, 71, 72, 75, 76, 78, 80, 82, 83, 87, 88, 90, 91, 93, 94, 96, 98, 101, 102, 104, 105, 109, 110, 112, 114, 116, 118, 120, 121
Offset: 1

Views

Author

Keywords

Comments

Tenenbaum (1985) proves that a(n) < n exp(c sqrt(log log n log log log n)) for some constant c > 0 and all n > 16. Numerically, c appears to be close to 0.5 or 0.55.

References

  • R. R. Hall and G. Tenenbaum, On the average and normal orders of Hooley's ∆-function, J. London Math. Soc. (2), Vol. 25, No. 3 (1982), pp. 392-406.
  • C. Hooley, On a new technique and its applications to the theory of numbers, Proc. London Math. Soc. 3 38:1 (1979), pp. 115-151.
  • Gérald Tenenbaum, Sur la concentration moyenne des diviseurs, Commentarii Mathematici Helvetici 60:1 (1985), pp. 411-428.

Crossrefs

Partial sums of A226898.

Programs

  • Maple
    with(numtheory):
    b:= n-> (l-> max(seq(nops(select(x-> is(x<=exp(1)*l[i]), l))-i+1,
            i=1..nops(l))))(sort([divisors(n)[]])):
    a:= proc(n) a(n):= b(n) +`if`(n=1, 0, a(n-1)) end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 21 2013
  • Mathematica
    delta[n_] := Module[{d = Divisors[n], m = 1}, For[i = 1, i < Length[d], i++, t = E*d[[i]]; m = Max[Sum[Boole[d[[j]] < t], {j, i, Length[d]}], m]]; m];
    A226901 = Array[delta, 100] // Accumulate (* Jean-François Alcover, Mar 24 2017, translated from PARI *)
  • PARI
    Delta(n)=my(d=divisors(n), m=1); for(i=1, #d-1, my(t=exp(1)*d[i]); m=max(sum(j=i, #d, d[j]
    				

Formula

n log log n << a(n) << n (log log n)^(11/4); the lower bound is due to Hall & Tenenbaum (1988) and the upper bound to Koukoulopoulos & Tao.
Showing 1-4 of 4 results.