cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A226898 Hooley's Delta function: maximum number of divisors of n in [u, eu] for all u. (Here e is Euler's number 2.718... = A001113.)

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 2, 3, 1, 2, 1, 4, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 4, 1, 2, 2, 2, 2, 2, 1, 2, 1, 3, 1, 4, 1, 2, 2, 2, 2, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 2, 2
Offset: 1

Views

Author

Keywords

Comments

This function measures the tendency of divisors of a number to cluster.
Tenenbaum (1985) proves that a(1) + ... + a(n) < n exp(c sqrt(log log n log log log n)) for some constant c > 0 and all n > 16. In particular, the average order of a(n) is O((log n)^k) for any k > 0.
Maier & Tenenbaum show that (log log n)^(g + o(1)) < a(n) < (log log n)^(log 2 + o(1)) for almost all n, with g = log 2/log((1-1/log 27)/(1-1/log 3)) = 0.338....
For generalizations, see de la Bretèche & Tenenbaum, Brüdern, Hall & Tenenbaum, and Caballero.

Examples

			The divisors of 24 are 1, 2, 3, 4, 6, 8, 12, 24. For u = 3, {3, 4, 6, 8} are in [3, 3e] = [3, 8.15...] and thus a(24) = 4.
		

References

  • R. R. Hall and G. Tenenbaum, On the average and normal orders of Hooley's ∆-function, J. London Math. Soc. (2), Vol. 25, No. 3 (1982), pp. 392-406.
  • R. R. Hall and G. Tenenbaum, Divisors. Cambridge Tracts in Mathematics, 90. Cambridge University Press, Cambridge, 1988.

Crossrefs

Partial sums are A226901. Cf. A226899, A226900, A027750, A022843.

Programs

  • Haskell
    a226898 = maximum . map length .
       map (\ds@(d:_) -> takeWhile (<= e' d) ds) . init . tails . a027750_row
       where e' = floor . (* e) . fromIntegral; e = exp 1
    -- Reinhard Zumkeller, Jul 06 2013
    
  • Maple
    with(numtheory):
    a:= n-> (l-> max(seq(nops(select(x-> is(x<=exp(1)*l[i]), l))-i+1,
            i=1..nops(l))))(sort([divisors(n)[]])):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 21 2013
  • Mathematica
    a[n_] := Module[{d = Divisors[n], m = 1}, For[i = 1, i < Length[d], i++, t = E*d[[i]]; m = Max[ Sum[ Boole[d[[j]] < t], {j, i, Length[d]}], m]]; m]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 08 2013, after Pari *)
  • PARI
    a(n)=my(d=divisors(n),m=1);for(i=1,#d-1, my(t=exp(1)*d[i]); m=max(sum(j=i,#d,d[j]
    				
  • PARI
    a(n)=my(d=divisors(n),r,t); for(i=1,#d\2, t=setsearch(d, d[i]*exp(1)\1,1); t=if(t, t-i, setsearch(d,d[i]*exp(1)\1)+1-i); if(t>r, r=t)); r \\ Charles R Greathouse IV, Mar 01 2018
    
  • Python
    from sympy import divisors, exp
    def a(n):
        d = divisors(n)
        m = 1
        for i in range(len(d) - 1):
            t = exp(1)*d[i]
            m = max(sum(1 for j in range(i, len(d)) if d[j]Indranil Ghosh, Jul 19 2017

Formula

a(mn) <= d(m)a(n) where d(n) is A000005.
The average order is between log log x and (log log x)^(11/4); the lower bound is due to Hall & Tenenbaum (1988) and the upper bound to Koukoulopoulos & Tao. - Charles R Greathouse IV, Jun 26 2023

A226899 Numbers n for which Delta(m) < Delta(n) for all m < n, where Delta is Hooley's Delta function A226898.

Original entry on oeis.org

1, 2, 12, 24, 120, 180, 360, 720, 1260, 2520, 5040, 10080, 15120, 27720, 30240, 50400, 55440, 65520, 83160, 110880, 166320, 221760, 277200, 332640, 360360, 554400, 665280, 720720, 1441440, 2162160, 3603600, 4324320, 7207200, 8648640, 10810800, 14414400, 21621600
Offset: 1

Views

Author

Keywords

Comments

Not a subsequence of A025487: a(18) = 65520 = 2^4 * 3^2 * 5 * 7 * 13, a(46) = 136936800 = 2^5 * 3^2 * 5^2 * 7 * 11 * 13 * 19, and a(50) = 273873600 = 2^6 * 3^2 * 5^2 * 7 * 11 * 13 * 19. - Charles R Greathouse IV, Mar 12 2018

Crossrefs

Programs

  • PARI
    Delta(n)=my(d=divisors(n),r,t); for(i=1,#d\2, t=setsearch(d,d[i]*exp(1)\1, 1); t=if(t, t-i, setsearch(d, d[i]*exp(1)\1)+1-i); if(t>r,r=t)); r
    r=0; for(n=1,1e9, t=Delta(n); if(t>r, r=t; print1(n", ")))

A226901 Partial sums of Hooley's Delta function.

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 19, 20, 22, 24, 26, 27, 29, 30, 33, 35, 37, 38, 42, 43, 45, 46, 48, 49, 52, 53, 55, 56, 58, 60, 63, 64, 66, 67, 71, 72, 75, 76, 78, 80, 82, 83, 87, 88, 90, 91, 93, 94, 96, 98, 101, 102, 104, 105, 109, 110, 112, 114, 116, 118, 120, 121
Offset: 1

Views

Author

Keywords

Comments

Tenenbaum (1985) proves that a(n) < n exp(c sqrt(log log n log log log n)) for some constant c > 0 and all n > 16. Numerically, c appears to be close to 0.5 or 0.55.

References

  • R. R. Hall and G. Tenenbaum, On the average and normal orders of Hooley's ∆-function, J. London Math. Soc. (2), Vol. 25, No. 3 (1982), pp. 392-406.
  • C. Hooley, On a new technique and its applications to the theory of numbers, Proc. London Math. Soc. 3 38:1 (1979), pp. 115-151.
  • Gérald Tenenbaum, Sur la concentration moyenne des diviseurs, Commentarii Mathematici Helvetici 60:1 (1985), pp. 411-428.

Crossrefs

Partial sums of A226898.

Programs

  • Maple
    with(numtheory):
    b:= n-> (l-> max(seq(nops(select(x-> is(x<=exp(1)*l[i]), l))-i+1,
            i=1..nops(l))))(sort([divisors(n)[]])):
    a:= proc(n) a(n):= b(n) +`if`(n=1, 0, a(n-1)) end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 21 2013
  • Mathematica
    delta[n_] := Module[{d = Divisors[n], m = 1}, For[i = 1, i < Length[d], i++, t = E*d[[i]]; m = Max[Sum[Boole[d[[j]] < t], {j, i, Length[d]}], m]]; m];
    A226901 = Array[delta, 100] // Accumulate (* Jean-François Alcover, Mar 24 2017, translated from PARI *)
  • PARI
    Delta(n)=my(d=divisors(n), m=1); for(i=1, #d-1, my(t=exp(1)*d[i]); m=max(sum(j=i, #d, d[j]
    				

Formula

n log log n << a(n) << n (log log n)^(11/4); the lower bound is due to Hall & Tenenbaum (1988) and the upper bound to Koukoulopoulos & Tao.

A309278 Index of first occurrence of n in the Erdös-Hooley Delta function A226898, with a(0)=0.

Original entry on oeis.org

0, 1, 2, 12, 24, 120, 180, 360, 720, 1260, 2880, 3780, 2520, 9240, 5040, 10080, 18480, 15120, 27720, 30240, 50400, 55440, 65520, 83160, 151200, 110880, 240240, 166320, 221760, 277200, 388080, 332640, 360360, 554400, 665280, 786240, 997920, 831600, 942480, 720720, 1995840
Offset: 0

Views

Author

Robert G. Wilson v, Jul 20 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{ds = Divisors@n, k = 1, mx = 0}, len = Length@ds; While[k < len, a = Length@Select[Take[ds, {k, len}], ds[[k]]*E > # &]; If[a > mx, mx = a]; k++]; mx]; f[1] = 1; t[_] := 0; k = 1; While[k < 10^5, a = f@k; If[ t[a] == 0, t[a] = k]; k++]; t@# & /@ Range[0, 23]
Showing 1-4 of 4 results.