A226936 Number T(n,k) of squares of size k^2 in all tilings of an n X n square using integer-sided square tiles; triangle T(n,k), n >= 1, 1 <= k <= n, read by rows.
1, 4, 1, 29, 4, 1, 312, 69, 4, 1, 5598, 1184, 153, 4, 1, 176664, 40078, 4552, 373, 4, 1, 9966344, 2311632, 285414, 18160, 917, 4, 1, 1018924032, 241967774, 30278272, 2128226, 74368, 2321, 4, 1, 190191337356, 45914039784, 5860964300, 411308056, 16210982, 311784, 5933, 4, 1
Offset: 1
Examples
For n=3 there are [29, 4, 1] squares of sizes [1^2, 2^2, 3^3] in all tilings of a 3 X 3 square: ._._._. ._._._. ._._._. ._._._. ._._._. ._._._. | | | |_| |_|_|_| |_| | |_|_|_| |_|_|_| | | |___|_| | |_| |_|___| |_| | |_|_|_| |_____| |_|_|_| |___|_| |_|_|_| |_|___| |_|_|_|. Triangle T(n,k) begins: n \ k 1 2 3 4 5 6 7 8 --:---------------------------------------------------------------- 1 : 1; 2 : 4, 1; 3 : 29, 4, 1; 4 : 312, 69, 4, 1; 5 : 5598, 1184, 153, 4, 1; 6 : 176664, 40078, 4552, 373, 4, 1; 7 : 9966344, 2311632, 285414, 18160, 917, 4, 1; 8 : 1018924032, 241967774, 30278272, 2128226, 74368, 2321, 4, 1;
Links
- Alois P. Heinz, Rows n = 1..15, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, l) option remember; local i, k, s, t; if max(l[])>n then [0$2] elif n=0 then [1, 0] elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l)) else for k do if l[k]=0 then break fi od; s:=[0$2]; for i from k to nops(l) while l[i]=0 do s:= s+(h->h+ [0, h[1]*x^(1+i-k)])(b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])) od; s fi end: T:= n-> seq(coeff(b(n, [0$n])[2],x,k), k=1..n): seq(T(n), n=1..10);
-
Mathematica
$RecursionLimit = 1000; b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[Max[l] > n, {0, 0}, n == 0, {1, 0}, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1, 1][[1, 1]]; s = {0, 0}; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s + Function[h, h + {0, h[[1]]*x^(1+i-k)}][b[n, Join[l[[1 ;; k-1]], Array[1+i-k&, i-k+1], l[[i+1 ;; -1]] ] ] ] ]; s] ]; T[n_] := Table[Coefficient[b[n, Array[0&, n]][[2]], x, k], {k, 1, n}]; Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Dec 23 2013, translated from Maple *)