cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A045846 Number of distinct ways to cut an n X n square into squares with integer sides.

Original entry on oeis.org

1, 1, 2, 6, 40, 472, 10668, 450924, 35863972, 5353011036, 1500957422222, 790347882174804, 781621363452405930, 1451740730942350766748, 5064070747064013556294032, 33176273260130056822126522884, 408199838581532754602910469192704
Offset: 0

Views

Author

Keywords

Examples

			For n=3 the 6 dissections are: the full 3 X 3 square; 9 1 X 1 squares; one 2 X 2 square and five 1 X 1 squares (in 4 ways).
		

Crossrefs

Diagonal of A219924. - Alois P. Heinz, Dec 01 2012
See A224239 for the number of inequivalent ways.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then 0 elif n=0 or l=[] then 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:=0;
             for i from k to nops(l) while l[i]=0 do s:=s+
               b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])
             od; s
          fi
        end:
    a:= n-> b(n, [0$n]):
    seq(a(n), n=0..11);  # Alois P. Heinz, Apr 15 2013
  • Mathematica
    $RecursionLimit = 1000; b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[ Max[l]>n, 0, n == 0 || l == {}, 1, Min[l]>0, t = Min[l]; b[n-t, l-t], True, For[k = 1, True, k++, If[l[[k]] == 0, Break[]]]; s=0; For[i=k, i <= Length[l] && l[[i]] == 0, i++, s = s + b[n, Join[l[[1 ;; k-1]], Table[1+i-k, {i-k+1}], l[[i+1 ;; Length[l]]]]]]; s]]; a[n_] := b[n, Array[0&, n]]; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)

Formula

It appears lim n->oo a(n)*a(n-3)/(a(n-1)*a(n-2)) = 3.527... - Gerald McGarvey, May 03 2005
It appears that lim n->oo a(n)*a(n-2)/(a(n-1))^2 = 1.8781... - Christopher Hunt Gribble, Jun 21 2013
a(n) = (1/n^2) * Sum_{k=1..n} k^2 * A226936(n,k). - Alois P. Heinz, Jun 22 2013

Extensions

More terms from Hugo van der Sanden, Nov 06 2000
a(14)-a(15) from Alois P. Heinz, Nov 30 2012
a(16) from Steve Butler, Mar 14 2014

A226554 Number of squares in all tilings of an n X n square using integer-sided square tiles.

Original entry on oeis.org

0, 1, 5, 34, 386, 6940, 221672, 12582472, 1293374998, 242394178200, 83374069529638, 52845726291860344, 61928161880183204434, 134499571879749571406816, 542432658409586214809714176, 4068438590479352629770422328000, 56820656114941381799512710314429768
Offset: 0

Views

Author

Alois P. Heinz, Jun 10 2013

Keywords

Crossrefs

Main diagonal of A226545.
Row sums of A226936.
Cf. A045846.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then [0, 0] elif n=0 or l=[] then [1, 0]
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:=[0$2];
             for i from k to nops(l) while l[i]=0 do s:=s+(h->h+[0, h[1]])
               (b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))
             od; s
          fi
        end:
    a:= n-> b(n, [0$n])[2]:
    seq(a(n), n=0..10);
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{i, k, s, t},
         Which[Max[l] > n, {0, 0}, n == 0 || l == {}, {1, 0},
         Min[l] > 0, t = Min[l]; b[n - t, l - t], True,
           k = Position[l, 0, 1][[1, 1]]; s = {0, 0};
         For[i = k, i <= Length[l] && l[[i]] == 0, i++,
           s = s + Function[h, h + {0, h[[1]]}][b[n, Join[l[[1;; k-1]],
           Table[1+i-k, {j, k, i}], l[[i+1;;]]]]]]; s]];
    a[n_] := b[n, Array[0&, n]][[2]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 27 2022, after Alois P. Heinz in A226545 *)

Extensions

a(16) from Alois P. Heinz, Nov 16 2016

A226892 Number of squares of size n^2 in all tilings of an (n+2) X (n+2) square using integer-sided square tiles.

Original entry on oeis.org

0, 29, 69, 153, 373, 917, 2321, 5933, 15317, 39737, 103461, 269925, 705169, 1843709, 4822949, 12620249, 33029909, 86456693, 226319505, 592468365, 1551031477, 4060538489, 10630442309, 27830559173, 72860864273, 190751433437, 499392464901, 1307424389913
Offset: 0

Views

Author

Alois P. Heinz, Jun 22 2013

Keywords

Examples

			a(1) = 29:
._._._.  ._._._.  ._._._.  ._._._.  ._._._.  ._._._.
|     |  |   |_|  |_|_|_|  |_|   |  |_|_|_|  |_|_|_|
|     |  |___|_|  |   |_|  |_|___|  |_|   |  |_|_|_|
|_____|  |_|_|_|  |___|_|  |_|_|_|  |_|___|  |_|_|_|.
		

Crossrefs

A diagonal of A226936.

Formula

G.f.: (17*x^5 - 29*x^4 - 73*x^3 + 65*x^2 + 47*x - 29)*x / (-x^6 + 2*x^5 + 4*x^4 - 6*x^3 - 2*x^2 + 4*x - 1).
Showing 1-3 of 3 results.