A226961 Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 3 (mod n).
1, 2, 3, 18, 126, 5418
Offset: 1
Links
- M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT]
Crossrefs
Programs
-
Mathematica
Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 3 &]
-
PARI
is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-3 \\ Charles R Greathouse IV, Nov 13 2013
Extensions
1, 2, 3 prepended by Max Alekseyev, Aug 25 2013
Comments