A227005 Number of Hamiltonian circuits in a 2n X 2n square lattice of nodes, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 2 elements.
0, 1, 4, 20, 346, 6891, 634172, 47917598, 27622729933, 6998287399637
Offset: 1
Examples
When n = 2, there is only 1 Hamiltonian circuit in a 4 X 4 square lattice where the orbits under the symmetry group of the square have 2 elements. The 2 elements are: o__o__o__o o__o o__o | | | | | | o__o o__o o o__o o | | | | o__o o__o o o__o o | | | | | | o__o__o__o o__o o__o
Links
- Giovanni Resta, Simple C program for computing a(1)-a(4)
- Ed Wynn, Enumeration of nonisomorphic Hamiltonian cycles on square grid graphs, arXiv:1402.0545 [math.CO], 2014.
Formula
Extensions
a(4) from Giovanni Resta, Jul 11 2013
a(5)-a(10) from Ed Wynn, Feb 05 2014