cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A063524 Characteristic function of 1.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Labos Elemer, Jul 30 2001

Keywords

Comments

The identity function for Dirichlet multiplication (see Apostol).
Sum of the Moebius function mu(d) of the divisors d of n. - Robert G. Wilson v, Sep 30 2006
-a(n) is the Hankel transform of A000045(n), n >= 0 (Fibonacci numbers). See A055879 for the definition of Hankel transform. - Wolfdieter Lang, Jan 23 2007
a(A000012(n)) = 1; a(A087156(n)) = 0. - Reinhard Zumkeller, Oct 11 2008
a(n) for n >= 1 is the Dirichlet convolution of following functions b(n), c(n), a(n) = Sum_{d|n} b(d)*c(n/d): a(n) = A008683(n) * A000012(n), a(n) = A007427(n) * A000005(n), a(n) = A007428(n) * A007425(n). - Jaroslav Krizek, Mar 03 2009
From Christopher Hunt Gribble, Jul 11 2013: (Start)
a(n) for 1 <= n <= 4 and conjectured for n > 4 is the number of Hamiltonian circuits in a 2n X 2n square lattice of nodes, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 1 element: When n=1, there is only 1 Hamiltonian circuit in a 2 X 2 square lattice, as illustrated below. The circuit is the same when rotated and/or reflected and so has only 1 orbital element under the symmetry group of the square.
o--o
| |
o--o (End)
Convolution property: For any sequence b(n), the sequence c(n)=b(n)*a(n) has the following values: c(1)=0, c(n+1)=b(n) for all n > 1. In other words, the sequence b(n) is shifted 1 step to the right. - David Neil McGrath, Nov 10 2014

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 30.

Crossrefs

Programs

Formula

From Philippe Deléham, Nov 25 2008: (Start)
G.f.: x.
E.g.f.: x. (End)
a(n) = mu(n^2). - Enrique Pérez Herrero, Sep 04 2009
a(n) = floor(n/A000203(n)) for n > 0. - Enrique Pérez Herrero, Nov 11 2009
a(n) = (1-(-1)^(2^abs(n-1)))/2 = (1-(-1)^(2^((n-1)^2)))/2. - Luce ETIENNE, Jun 05 2015
a(n) = n*(A057427(n) - A057427(n-1)) = A000007(abs(n-1)). - Chayim Lowen, Aug 01 2015
a(n) = A010051(p*n) for any prime p (where A010051(0)=0). - Chayim Lowen, Aug 05 2015
From Antti Karttunen, Jun 04 2022: (Start)
For n >= 1:
a(n) = Sum_{d|n} A000010(n/d) * A023900(d), and similarly for any pair of sequences that are Dirichlet inverses of each other, like for example A000027 & A055615 and those mentioned in Krizek's Mar 03 2009 comment above.
a(n) = [A101296(n) == 1], where [ ] is the Iverson bracket.
Fully multiplicative with a(p^e) = 0. (End)

A227257 Number of Hamiltonian circuits in a 2n X 2n square lattice of nodes, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 4 elements.

Original entry on oeis.org

0, 1, 24, 1760, 411861, 551247139, 2883245852086, 85948329517780776, 11001968794030973784902, 7462399462450938863305238264
Offset: 1

Views

Author

Keywords

Examples

			When n = 2, there is only 1 Hamiltonian circuit in a 4 X 4 square lattice, where the orbits under the symmetry group of the square have 4 elements.  The 4 elements are:
    o__o__o__o    o__o__o__o    o__o__o__o    o__o  o__o
    |        |    |        |    |        |    |  |  |  |
    o  o__o__o    o  o__o  o    o__o__o  o    o  o  o  o
    |  |          |  |  |  |          |  |    |  |  |  |
    o  o__o__o    o  o  o  o    o__o__o  o    o  o__o  o
    |        |    |  |  |  |    |        |    |        |
    o__o__o__o    o__o  o__o    o__o__o__o    o__o__o__o
		

Crossrefs

Formula

a(n) = A237429(n) + A237430(n). - Ed Wynn, Feb 07 2014

Extensions

a(4) from Giovanni Resta, Jul 11 2013
a(5)-a(10) from Ed Wynn, Feb 05 2014

A227301 Number of Hamiltonian circuits in a 2n node X 2n node square lattice, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 8 elements.

Original entry on oeis.org

0, 0, 121, 578937, 58407351059, 134528360800075421, 7015812452559988037073365, 8235314565328229497795808499821534, 216740797236120772990968348272561831275923059, 127557553423846099192878370706037904215158660401579043097
Offset: 1

Views

Author

Keywords

Examples

			When n = 3 there are 121 Hamiltonian circuits in a 6 X 6  square lattice where the orbits under the symmetry group of the square have 8 elements.  One of these circuits is shown below with its 8 distinct transformations under rotation and reflection:
o__o__o__o__o__o    o__o  o__o  o__o    o__o__o__o__o__o
|              |    |  |  |  |  |  |    |              |
o__o__o__o  o__o    o  o  o  o  o  o    o__o__o  o__o__o
         |  |       |  |  |  |  |  |          |  |
o__o__o__o  o__o    o  o__o  o  o  o    o__o__o  o__o__o
|              |    |        |  |  |    |              |
o__o__o  o__o__o    o  o__o  o__o  o    o__o  o__o__o__o
      |  |          |  |  |        |       |  |
o__o__o  o__o__o    o  o  o  o__o  o    o__o  o__o__o__o
|              |    |  |  |  |  |  |    |              |
o__o__o__o__o__o    o__o  o__o  o__o    o__o__o__o__o__o
.
o__o  o__o  o__o    o__o__o__o__o__o    o__o  o__o  o__o
|  |  |  |  |  |    |              |    |  |  |  |  |  |
o  o__o  o  o  o    o__o  o__o__o__o    o  o  o  o__o  o
|        |  |  |       |  |             |  |  |        |
o  o__o  o__o  o    o__o  o__o__o__o    o  o__o  o__o  o
|  |  |        |    |              |    |        |  |  |
o  o  o  o__o  o    o__o__o  o__o__o    o  o__o  o  o  o
|  |  |  |  |  |          |  |          |  |  |  |  |  |
o  o  o  o  o  o    o__o__o  o__o__o    o  o  o  o  o  o
|  |  |  |  |  |    |              |    |  |  |  |  |  |
o__o  o__o  o__o    o__o__o__o__o__o    o__o  o__o  o__o
.
o__o__o__o__o__o    o__o  o__o  o__o
|              |    |  |  |  |  |  |
o__o__o  o__o__o    o  o  o  o  o  o
      |  |          |  |  |  |  |  |
o__o__o  o__o__o    o  o  o  o__o  o
|              |    |  |  |        |
o__o__o__o  o__o    o  o__o  o__o  o
         |  |       |        |  |  |
o__o__o__o  o__o    o  o__o  o  o  o
|              |    |  |  |  |  |  |
o__o__o__o__o__o    o__o  o__o  o__o
		

Crossrefs

Formula

Extensions

a(4) from Giovanni Resta, Jul 11 2013
a(5)-a(10) from Ed Wynn, Feb 05 2014

A237431 Number of nonisomorphic Hamiltonian cycles on 2n X 2n square grid of points with exactly two axes of reflective symmetry.

Original entry on oeis.org

0, 1, 3, 20, 244, 6891, 378813, 47917598, 12118420172, 6998287399637
Offset: 1

Views

Author

Ed Wynn, Feb 07 2014

Keywords

Examples

			Examples of 2 of the 3 classes for n=3. Note that all examples also have two-fold (but not four-fold) rotational symmetry.
  o-o-o-o-o-o   o-o-o-o-o-o
  |         |   |         |
  o-o-o o-o-o   o o-o o-o o
      | |       | | | | | |
  o-o-o o-o-o   o-o o o o-o
  |         |       | |
  o-o-o o-o-o   o-o o o o-o
      | |       | | | | | |
  o-o-o o-o-o   o o-o o-o o
  |         |   |         |
  o-o-o-o-o-o   o-o-o-o-o-o
		

Crossrefs

A237432 Number of nonisomorphic Hamiltonian cycles on (4n-2) X (4n-2) square grid of points with four-fold rotational symmetry (and no other symmetry).

Original entry on oeis.org

0, 1, 102, 255359, 15504309761, 21955745395591600, 712319733455900182066337, 524246290066954425217045809870657
Offset: 1

Views

Author

Ed Wynn, Feb 07 2014

Keywords

Comments

For square grids of m X m points, there are solutions only for m = (4n-2).

Examples

			The two cycles counted as a single class for n=2. These are isomorphic (here meaning isomorphic under the full symmetry group of the square), since each is a reflection of the other.
  o-o o-o-o-o  o-o-o-o o-o
  | | |     |  |     | | |
  o o o o-o-o  o-o-o o o o
  | | | |          | | | |
  o o-o o-o-o  o-o-o o-o o
  |         |  |         |
  o-o-o o-o o  o o-o o-o-o
      | | | |  | | | |
  o-o-o o o o  o o o o-o-o
  |     | | |  | | |     |
  o-o-o-o o-o  o-o o-o-o-o
		

Crossrefs

Formula

a(n) = A238819(n-1) / 2 for n > 1. - Andrew Howroyd, Apr 06 2016

Extensions

a(6)-a(8) from Andrew Howroyd, Apr 06 2016
Showing 1-5 of 5 results.