cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227035 a(n) = Sum_{k=0..floor(n/4)} binomial(n,4*k)*binomial(5*k,k)/(4*k+1).

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 16, 36, 76, 172, 436, 1156, 3006, 7606, 19202, 49466, 130156, 345356, 915196, 2421532, 6427001, 17163581, 46087911, 124133531, 334850208, 904691576, 2449891276, 6651540676, 18100561856, 49344295152, 134719523056, 368350942416, 1008680051756
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 28 2013

Keywords

Comments

Generally, Sum(binomial(n,p*k)*binomial((p+1)*k,k)/(p*k+1), k=0..floor(n/p)) is asymptotic to (p+(p+1)^(1+1/p))^(n+3/2)/(p^(n+1)*(p+1)^(1+3/(2*p))*n^(3/2)*sqrt(2*Pi)).

Crossrefs

Cf. A002294, A007317 (p=1), A049130 (p=2), A226974 (p=3), A226910 (p=5).

Programs

  • Mathematica
    Table[Sum[Binomial[n,4*k]*Binomial[5*k,k]/(4*k+1),{k,0,Floor[n/4]}],{n,0,20}]
  • PARI
    a(n)=sum(k=0,n\4,binomial(n,4*k)*binomial(5*k,k)/(4*k+1)) \\ Charles R Greathouse IV, Jun 28 2013

Formula

Recurrence: -2869*(n-7)*(n-6)*(n-5)*(n-4)*a(n-8) + 2*(n-6)*(n-5)*(n-4)*(5226*n-17267)*a(n-7) - (n-5)*(n-4)*(11582*n^2-55156*n+50139)*a(n-6) - 3*(n-4)*(612*n^3 - 18926*n^2 + 102684*n - 155665)*a(n-5) + 5*(n-4)*(2959*n^3 - 26172*n^2 + 77408*n - 76800)*a(n-4) - 1024*(n-2)*(2*n-5)*(7*n^2-35*n+48)*a(n-3) + 1024*(n-2)*(n-1)*(7*n^2-28*n+30)*a(n-2) - 1024*(n-2)*(n-1)*n*(2*n-3)*a(n-1) + 256*(n-2)*(n-1)*n*(n+1)*a(n) = 0.
a(n) ~ (4+5^(1+1/4))^(n+3/2)/(4^(n+1)*5^(1+3/8)*n^(3/2)*sqrt(2*Pi)).
G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x^4 * A(x)^5. - Ilya Gutkovskiy, Jul 25 2021
From Peter Bala, Sep 15 2021: (Start)
O.g.f.: A(x) = (1/x)*series reversion ( x*(1 - x^4)/(1 + x*(1 - x^4) )).
The g.f. of the m-th binomial transform of this sequence is equal to (1/x)*series reversion ( x*(1 - x^4)/(1 + (m + 1)*x*(1 - x^4)) ). The case m = -1 gives the sequence [1,0,0,0,1,0,0,0,5,0,0,0,35,0,0,0,285,...] - an aerated version of A002294. (End)