cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227037 Partial sums of A013999.

Original entry on oeis.org

1, 2, 4, 12, 54, 312, 2136, 16800, 149160, 1475280, 16081920, 191530080, 2473999920, 34446303360, 514240110720, 8193624284160, 138780284791680, 2489891543596800, 47169750454848000, 940914453958617600, 19712190644360121600
Offset: 0

Views

Author

Emanuele Munarini, Jul 01 2013

Keywords

Crossrefs

Cf. A013999.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, 2^n,
          (n+3)*a(n-1) -2*(n+1)*a(n-2) +(n+1)*a(n-3))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 01 2013
  • Mathematica
    Table[Sum[Sum[Binomial[j-k+1,k]*(-1)^k*(j-k+1)!,{k,0,Floor[(j+1)/2]}],{j,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jul 06 2013 *)
  • Maxima
    makelist(sum(sum(binomial(j-k+1,k)*(-1)^k*(j-k+1)!, k,0,floor((j+1)/2)), j, 0, n), n, 0, 20);

Formula

a(n) = sum(A013999(k), k=0..n).
a(n) = sum(sum(C(j-k+1,k)*(-1)^k*(j-k+1)!, k=0..floor((j+1)/2)), j=0..n).
Recurrence: a(n+4) -(n+8)*a(n+3) +(3*n+16)*a(n+2) -(3*n+13)*a(n+1) +(n+4)*a(n) = 0.
G.f.: Sum_{k>=0} (k+1)!*(x-x^2)^k.
a(n) = (n+3)*a(n-1)-2*(n+1)*a(n-2)+(n+1)*a(n-3) for n>2, a(n) = 2^n for n<=2. - Alois P. Heinz, Jul 01 2013
a(n) ~ n!*n/exp(1). - Vaclav Kotesovec, Jul 06 2013