cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227068 Least number with exactly n divisors less than its square root.

Original entry on oeis.org

2, 6, 12, 24, 48, 60, 144, 120, 180, 240, 3072, 360, 900, 960, 720, 840, 5184, 1260, 36864, 1680, 2880, 3600, 12582912, 2520, 6480, 61440, 6300, 6720, 805306368, 5040, 14400, 7560, 46080, 983040, 25920, 10080, 32400, 746496, 184320, 15120
Offset: 1

Views

Author

T. D. Noe, Jul 11 2013

Keywords

Comments

This is similar to A038549, which counts divisors of n <= sqrt(n). Note that an upper bound on a(n) is 3*2^(n-1), which is attained at n = 2, 3, 4, 5, 11, 23, and 29 -- the number 4 and the primes in A005384 (Sophie Germain primes, p and 2p+1 are prime).
A056924(a(n)) = n and A056924(m) <> n for m < a(n). - Reinhard Zumkeller, Jul 12 2013

Examples

			The divisors of 60 are 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60. Only 6 of these are < sqrt(60). And 60 is the first such number.
		

Crossrefs

Programs

  • C
    /* See Tek link. */
  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a227068 = (+ 1) . fromJust . (`elemIndex` a056924_list)
    -- Reinhard Zumkeller, Jul 12 2013
    
  • Mathematica
    nn = 22; t = Table[0, {nn}]; found = 0; n = 0; While[found < nn, n++; c = Length[Select[Divisors[n], # < Sqrt[n] &]]; If[c > 0 && c <= nn && t[[c]] == 0, t[[c]] = n; found++]]; t
    Map[Function[k, FirstPosition[#, k]], Range@ 22] &@ Table[Count[Divisors@ n, m_ /; m < Sqrt@ n], {n, 10^5}] // Flatten (* Michael De Vlieger, May 13 2016, Version 10 *)

Extensions

a(29) from Paul Tek, Jul 13 2013