A227070 Powers n such that the set s(n) = {k > 0 such that k^n ends with k} does not occur for smaller n.
1, 2, 3, 5, 6, 9, 11, 17, 21, 26, 33, 41, 51, 65, 81, 101, 126, 129, 161, 201, 251, 257, 321, 401, 501, 513, 626, 641, 801, 1001, 1025, 1251, 1281, 1601, 2001, 2049, 2501, 2561, 3126, 3201, 4001, 4097, 5001, 5121, 6251, 6401, 8001, 8193, 10001
Offset: 1
Crossrefs
Programs
-
Mathematica
ts = {}; t = {}; Do[s = Select[Range[11000000], PowerMod[#, n, 10^IntegerLength[#]] == # &]; If[! MemberQ[ts, s], Print[n]; AppendTo[ts, s]; AppendTo[t, n]], {n, 2, 101}]; t = Join[{1}, t]
Formula
Conjecture: a(n+1) = A003592(n) + 1. - Eric M. Schmidt, Jul 30 2013
Extensions
a(17)-a(49) from Giovanni Resta, Jul 30 2013
Comments