cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227074 A triangle formed like Pascal's triangle, but with 4^n on the borders instead of 1.

Original entry on oeis.org

1, 4, 4, 16, 8, 16, 64, 24, 24, 64, 256, 88, 48, 88, 256, 1024, 344, 136, 136, 344, 1024, 4096, 1368, 480, 272, 480, 1368, 4096, 16384, 5464, 1848, 752, 752, 1848, 5464, 16384, 65536, 21848, 7312, 2600, 1504, 2600, 7312, 21848, 65536, 262144, 87384, 29160
Offset: 0

Views

Author

T. D. Noe, Aug 06 2013

Keywords

Comments

All rows except the zeroth are divisible by 4. Is there a closed-form formula for these numbers, like for binomial coefficients?

Examples

			Triangle begins:
  1,
  4, 4,
  16, 8, 16,
  64, 24, 24, 64,
  256, 88, 48, 88, 256,
  1024, 344, 136, 136, 344, 1024,
  4096, 1368, 480, 272, 480, 1368, 4096,
  16384, 5464, 1848, 752, 752, 1848, 5464, 16384,
  65536, 21848, 7312, 2600, 1504, 2600, 7312, 21848, 65536
		

Crossrefs

Cf. A007318 (Pascal's triangle), A228053 ((-1)^n on the borders).
Cf. A051601 (n on the borders), A137688 (2^n on borders).
Cf. A165665 (row sums: 3*4^n - 2*2^n), A227075 (3^n edges), A227076 (5^n edges).

Programs

  • Mathematica
    t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = 4^n, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]