A227081 Row sums of A124576.
1, 2, 8, 40, 212, 1152, 6360, 35520, 200132, 1135456, 6478088, 37128896, 213617704, 1233014720, 7136819376, 41408161920, 240758343684, 1402436532576, 8182797500328, 47814708577728, 279768031296312, 1638915078384960, 9611453035886160
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Isaac DeJager, Madeleine Naquin, Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!( 1/(6*x -1 +2*Sqrt((2*x-1)*(6*x-1))) )); // G. C. Greubel, Nov 19 2018 -
Maple
AA := proc(n,k,x,y) option remember; if k <0 or k > n then 0 ; elif n = 0 then 1; elif k = 0 then x*procname(n-1,k,x,y)+procname(n-1,1,x,y) ; else procname(n-1,k-1,x,y)+y*procname(n-1,k,x,y)+procname(n-1,k+1,x,y) ; end if; end proc: seq(add( AA(n,k,1,4),k=0..n),n=0..30) ;
-
Mathematica
CoefficientList[Series[1/(6*x-1+2*Sqrt[(2*x-1)*(6*x-1)]), {x, 0, 30}], x] (* Vaclav Kotesovec, Jul 06 2013 *)
-
PARI
x='x+O('x^30); Vec(1/(6*x -1 +2*sqrt((2*x-1)*(6*x-1)))) \\ G. C. Greubel, Nov 19 2018
-
Sage
s= (1/(6*x -1 +2*sqrt((2*x-1)*(6*x-1)))).series(x,30); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 19 2018
Formula
Conjecture: 3*n*a(n) +2*(-13*n+9)*a(n-1) +4*(13*n-21)*a(n-2) +24*(-n+2)*a(n-3)=0.
a(n) ~ 2^(n-3/2)*3^(n+1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Jul 06 2013
G.f.: 1/(6*x -1 +2*sqrt((2*x-1)*(6*x-1))). - Vaclav Kotesovec, Jul 06 2013
Comments