cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227081 Row sums of A124576.

Original entry on oeis.org

1, 2, 8, 40, 212, 1152, 6360, 35520, 200132, 1135456, 6478088, 37128896, 213617704, 1233014720, 7136819376, 41408161920, 240758343684, 1402436532576, 8182797500328, 47814708577728, 279768031296312, 1638915078384960, 9611453035886160
Offset: 0

Views

Author

R. J. Mathar, Jun 30 2013

Keywords

Comments

The offset is chosen following the Deleham offset in A124576, not according to the less systematic offset in the definition.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( 1/(6*x -1 +2*Sqrt((2*x-1)*(6*x-1))) )); // G. C. Greubel, Nov 19 2018
    
  • Maple
    AA := proc(n,k,x,y)
        option remember;
        if k <0 or k > n then
            0 ;
        elif n = 0 then
            1;
        elif k = 0 then
            x*procname(n-1,k,x,y)+procname(n-1,1,x,y) ;
        else
            procname(n-1,k-1,x,y)+y*procname(n-1,k,x,y)+procname(n-1,k+1,x,y) ;
        end if;
    end proc:
    seq(add( AA(n,k,1,4),k=0..n),n=0..30) ;
  • Mathematica
    CoefficientList[Series[1/(6*x-1+2*Sqrt[(2*x-1)*(6*x-1)]), {x, 0, 30}], x] (* Vaclav Kotesovec, Jul 06 2013 *)
  • PARI
    x='x+O('x^30); Vec(1/(6*x -1 +2*sqrt((2*x-1)*(6*x-1)))) \\ G. C. Greubel, Nov 19 2018
    
  • Sage
    s= (1/(6*x -1 +2*sqrt((2*x-1)*(6*x-1)))).series(x,30); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 19 2018

Formula

Conjecture: 3*n*a(n) +2*(-13*n+9)*a(n-1) +4*(13*n-21)*a(n-2) +24*(-n+2)*a(n-3)=0.
a(n) ~ 2^(n-3/2)*3^(n+1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Jul 06 2013
G.f.: 1/(6*x -1 +2*sqrt((2*x-1)*(6*x-1))). - Vaclav Kotesovec, Jul 06 2013