cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227094 Binomial transform of A013999.

Original entry on oeis.org

1, 2, 5, 18, 91, 574, 4199, 34650, 318645, 3237034, 36041657, 436713506, 5722676895, 80654047942, 1216703923147, 19562850695690, 333991034593833, 6034449711055890, 115036771019660269, 2307582082535387570, 48588759062255598563, 1071533741191907032590
Offset: 0

Views

Author

Emanuele Munarini, Jul 01 2013

Keywords

Crossrefs

Cf. A013999.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 2, 5, 18][n+1],
          (n+6)*a(n-1)-(5*n+7)*a(n-2)+(8*n-7)*a(n-3)-(4*n-12)*a(n-4))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 01 2013
  • Mathematica
    a[n_] := a[n] = If[n < 4, {1, 2, 5, 18}[[n + 1]], (n + 6)*a[n - 1] - (5*n + 7)*a[n - 2] + (8*n - 7)*a[n - 3] - (4*n - 12)*a[n - 4]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 04 2018, from Maple *)
  • Maxima
    f(n):=sum(binomial(n-k+1,k)*(-1)^k*(n-k+1)!, k, 0, floor((n+1)/2)); a(n):=sum(binomial(n,k)*f(k), k, 0, n); makelist(a(n), n,0,20);

Formula

a(n) = sum(C(n,k)*A013999(k), k=0..n).
G.f.: sum(k!*x^(k-1)*(1-2*x)^k/(1-x)^(2*k), k>=1).
a(n) ~ n * n!. - Vaclav Kotesovec, Nov 02 2023