A227104 a(0)=-1, a(1)=3; a(n+2) = a(n+1) + a(n) + 2*A057078(n+1).
-1, 3, 2, 3, 7, 10, 15, 27, 42, 67, 111, 178, 287, 467, 754, 1219, 1975, 3194, 5167, 8363, 13530, 21891, 35423, 57314, 92735, 150051, 242786, 392835, 635623, 1028458, 1664079, 2692539, 4356618, 7049155, 11405775, 18454930, 29860703, 48315635, 78176338, 126491971
Offset: 0
Examples
a(6) = 2*F(6)-1 = 2*8-1 = 15; a(7) = 2*F(7)+1 = 2*13+1 = 27; a(8) = 2*F(8) = 2*21 = 42.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,1,2,1).
Crossrefs
Cf. A000045.
Programs
-
Mathematica
a[n_] := (m = Mod[n, 3]; 2*Fibonacci[n] - (3*m - 1)*(m - 2)/2); Table[a[n], {n, 0, 39}] (* Jean-François Alcover, Jul 02 2013 *)
Formula
a(3n) = 2*F(3n)-1, a(3n+1) = 2*F(3n+1)+1, a(3n+2) = 2*F(3n+2), where F=A000045.
a(n+3) = a(n) + 4*F(n+1).
a(n) = A226328(n) + 1 for n>1.
a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-4) - a(n-5) and many others by telescoping the fundamental recurrence.
G.f.: -(1-3*x-3*x^2-2*x^3) / ( (1-x-x^2)*(1+x+x^2) ). [Bruno Berselli, Jul 02 2013]
a(n) = a(n-2) + 2*a(n-3) - a(n-4). [Bruno Berselli, Jul 02 2013]
Extensions
Edited by Bruno Berselli, Jul 02 2013
Comments