A227127 The Akiyama-Tanigawa algorithm applied to 1/(1,2,3,5,... old prime numbers). Reduced numerators of the second row.
1, 1, 2, 8, 20, 12, 28, 16, 36, 60, 22, 72, 52, 28, 60, 96, 102, 36, 114, 80, 42, 132, 92, 144, 200, 104, 54, 112, 58, 120, 434, 128, 198, 68, 350, 72, 222, 228, 156, 240, 246, 84, 430, 88, 180, 92, 564, 576, 196, 100, 204, 312, 106, 540, 330, 336, 342, 116, 354, 240, 122
Offset: 0
Examples
a(n) is the numerators of c(n): c(0) = 1-1/2 = 1/2, c(1) = 2*(1/2-1/3) = 1/3, c(2) = 3*(1/3-1/5) = 2/5, c(3) = 4*(1/5-1/7)=8/35. a(3) = 4*2 = 8, a(4) = 5*4 = 20.
Programs
-
Mathematica
a[0, 0] = 1; a[0, m_ /; m > 0] := 1/Prime[m]; a[n_, m_] := a[n, m] = (m+1)*(a[n-1, m ] - a[n-1, m+1]); Table[a[1, m] // Numerator, {m, 0, 60}] (* Jean-François Alcover, Jul 04 2013 *)
Formula
a(n) = (n+1)*A001223(n-1), for n>=3.
Comments