cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227127 The Akiyama-Tanigawa algorithm applied to 1/(1,2,3,5,... old prime numbers). Reduced numerators of the second row.

Original entry on oeis.org

1, 1, 2, 8, 20, 12, 28, 16, 36, 60, 22, 72, 52, 28, 60, 96, 102, 36, 114, 80, 42, 132, 92, 144, 200, 104, 54, 112, 58, 120, 434, 128, 198, 68, 350, 72, 222, 228, 156, 240, 246, 84, 430, 88, 180, 92, 564, 576, 196, 100, 204, 312, 106, 540, 330, 336, 342, 116, 354, 240, 122
Offset: 0

Views

Author

Paul Curtz, Jul 02 2013

Keywords

Comments

1/A008578(n) and successive rows:
1, 1/2, 1/3, 1/5, 1/7,
1/2, 1/3, 2/5, 8/35, = c(n) = a(n)/b(n)
1/6, -2/15, 18/35,
3/10, -136/105,
67/42
b(n) is essentially A006094. See A209329.
a(n) yields to a permutation of A008578 (via 1, 1, 2, 8, 12, 16, 20, 22, ...): 1, 2, 3, 5, 11, 17, 7, 29,... .

Examples

			a(n) is the numerators of c(n): c(0) = 1-1/2 = 1/2, c(1) = 2*(1/2-1/3) = 1/3, c(2) = 3*(1/3-1/5) = 2/5, c(3) = 4*(1/5-1/7)=8/35.
a(3) = 4*2 = 8, a(4) = 5*4 = 20.
		

Crossrefs

Programs

  • Mathematica
    a[0, 0] = 1; a[0, m_ /; m > 0] := 1/Prime[m]; a[n_, m_] := a[n, m] = (m+1)*(a[n-1, m ] - a[n-1, m+1]); Table[a[1, m] // Numerator, {m, 0, 60}] (* Jean-François Alcover, Jul 04 2013 *)

Formula

a(n) = (n+1)*A001223(n-1), for n>=3.