A227168 a(n) = gcd(2*n, n*(n+1)/2)^2.
1, 1, 36, 4, 25, 9, 196, 16, 81, 25, 484, 36, 169, 49, 900, 64, 289, 81, 1444, 100, 441, 121, 2116, 144, 625, 169, 2916, 196, 841, 225, 3844, 256, 1089, 289, 4900, 324, 1369, 361, 6084, 400
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,-3,0,0,0,1).
Programs
-
Magma
[GCD(2*n, n*(n+1)/2)^2: n in [1..50]]; // G. C. Greubel, Sep 20 2018
-
Maple
A227168 := proc(n) A062828(n)^2 ; end proc: # R. J. Mathar, Jul 25 2013
-
Mathematica
a[n_] := GCD[2*n, n*(n + 1)/2]^2; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jul 03 2013 *)
-
PARI
a(n)=if(n%2, n*if(n%4>2, 2, 1), n/2)^2 \\ Charles R Greathouse IV, Jul 07 2013
Formula
a(n) = A062828(n)^2.
a(4n) = (4*n+1)^2; a(2n+1) = (n+1)^2; a(4n+2) = 4*(4*n+3)^2.
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
a(n) * (period 4: repeat 4, 1, 1, 4) = A061038(n).
G.f.: -x*(1 + x + 36*x^2 + 4*x^3 + 22*x^4 + 6*x^5 + 88*x^6 + 4*x^7 + 9*x^8 + x^9 + 4*x^10) / ( (x-1)^3*(1+x)^3*(x^2+1)^3 ). - R. J. Mathar, Jul 20 2013
Sum_{n>=1} 1/a(n) = 47*Pi^2/192 + 3*G/8, where G is Catalan's constant (A006752). - Amiram Eldar, Aug 21 2022
Comments