A227176 E.g.f.: LambertW(LambertW(-x)) / LambertW(-x).
1, 1, 5, 43, 525, 8321, 162463, 3774513, 101808185, 3129525793, 108063152091, 4143297446729, 174723134310277, 8039591465487297, 400924930695585143, 21543513647508536161, 1241094846565489688817, 76314967969651411780673, 4989260143610128556354611
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 43*x^3/3! + 525*x^4/4! + 8321*x^5/5! +... Define W(x) = LambertW(-x)/(-x), where W(x) = exp(x*W(x)) and begins: W(x) = 1 + x + 3*x^2/2! + 4^2*x^3/3! + 5^3*x^4/4! + 6^4*x^5/5! +... then (1) A(x) = W(x*W(x)), (4) A(x) = W(x)^A(x), (3) A(x) = exp( x*A(x)*W(x) ), (8) A(x/exp(x)) = W(x). The e.g.f. also satisfies: (6) A(x) = 1 + A(x)*x + A(x)*(2 + A(x))*x^2/2! + A(x)*(3 + A(x))^2*x^3/3! + A(x)*(4 + A(x))^3*x^4/4! + A(x)*(5 + A(x))^4*x^5/5! +... and, for all real m, (7) A(x)^m = 1 + m*A(x)*(1+m*A(x))^0*x^1/1! + m*A(x)*(2+m*A(x))^1*x^2/2! + m*A(x)*(3+m*A(x))^2*x^3/3! + m*A(x)*(4+m*A(x))^3*x^4/4! + m*A(x)*(5+m*A(x))^4*x^5/5! +...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
Programs
-
Mathematica
CoefficientList[Series[LambertW[LambertW[-x]]/LambertW[-x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 05 2013 *)
-
PARI
{a(n) = if(n==0,1,sum(k=0,n,binomial(n,k)*k*(k+1)^(k-1)*n^(n-k-1)))} for(n=0,20,print1(a(n),", "))
-
PARI
/* E.g.f.: A(x) = W(x*W(x)) */ {a(n)=local(W=sum(k=0,n,(k+1)^(k-1)*x^k/k!)+x*O(x^n));n!*polcoeff(subst(W,x,x*W), n)}
-
PARI
/* E.g.f.: A(x) = exp(T(T(x)) ) */ {a(n)=local(T=sum(k=1,n,k^(k-1)*x^k/k!)+x*O(x^n));n!*polcoeff(exp(subst(T,x,T)), n)}
-
PARI
/* E.g.f.: A(x) = exp( -A(x)*LambertW(-x) ) */ {a(n)=local(A=1+x,LambertW=sum(k=1,n,-k^(k-1)*(-x)^k/k!)+x*O(x^n)); for(i=1,n,A=exp(-A*subst(LambertW,x,-x) +x*O(x^n)));n!*polcoeff(A, n)}
-
PARI
/* E.g.f.: A(x) = ( LambertW(-x)/(-x) )^A(x) */ {a(n)=local(A=1+x,W=sum(k=0,n,(k+1)^(k-1)*x^k/k!)+x*O(x^n)); for(i=1,n,A=W^A);n!*polcoeff(A, n)}
-
PARI
/* E.g.f.: A(x) = Sum_{n>=0} A(x)*(n + A(x))^(n-1) * x^n/n!. */ {a(n)=local(A=1+x);for(i=1,n,A=sum(k=0, n, A*(k+A)^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(A, n)}
Formula
a(n) = Sum_{k=0..n} binomial(n,k) * k*(k+1)^(k-1) * n^(n-k-1) for n>0 with a(0)=1.
E.g.f. A(x) satisfies:
(1) A(x) = W(x*W(x)), where W(x) = LambertW(-x)/(-x) = Sum_{n>=0} (n+1)^(n-1)*x^n/n!.
(2) A(x) = exp( T(T(x)) ), where T(x) = -LambertW(-x) is Euler's tree function (A000169).
(3) A(x) = exp( -A(x)*LambertW(-x) ).
(4) A(x) = ( LambertW(-x)/(-x) )^A(x).
(5) A(x) = ( Sum_{n>=0} (n+1)^(n-1)*x^n/n! )^A(x).
(6) A(x) = Sum_{n>=0} A(x)*(n + A(x))^(n-1) * x^n/n!.
(7) A(x)^m = Sum_{n>=0} m*A(x)*(n + m*A(x))^(n-1) * x^n/n!.
(8) A(x/exp(x)) = exp(T(x)) = LambertW(-x)/(-x).
(9) log(A(x)) = A(x) * Sum_{n>=1} n^(n-1) * x^n/n!, and equals the e.g.f. of A207833.
(10) A(x) = 1 + Sum_{n>=1} (n+1)^(n-1)*x^n/n! * Sum_{k>=0} n*(k+n)^(k-1)*x^k/k!.
a(n) ~ n! * (-exp((1+exp(-1))*n)/(sqrt(2*Pi*(1-exp(-1)))*n^(3/2) *LambertW(-exp(-1-exp(-1))))). - Vaclav Kotesovec, Jul 05 2013