A227226 Expansion of phi(-q^3)^6 / phi(-q)^2 where phi() is a Ramanujan theta function.
1, 4, 12, 20, 28, 24, 28, 32, 60, 68, 72, 48, 44, 56, 96, 120, 124, 72, 76, 80, 168, 160, 144, 96, 76, 124, 168, 212, 224, 120, 168, 128, 252, 240, 216, 192, 92, 152, 240, 280, 360, 168, 224, 176, 336, 408, 288, 192, 140, 228, 372, 360, 392, 216, 220, 288
Offset: 0
Keywords
Examples
G.f. = 1 + 4*q + 12*q^2 + 20*q^3 + 28*q^4 + 24*q^5 + 28*q^6 + 32*q^7 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- K. S. Williams, Fourier series of a class of eta quotients, Int. J. Number Theory 8 (2012), no. 4, 993-1004.
Programs
-
Magma
A := Basis( ModularForms( Gamma0(6), 2), 50); A[1] + 4*A[2] + 12*A[3];
-
Mathematica
a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2] QPochhammer[ q^3]^6 / (QPochhammer[ q]^2 QPochhammer[ q^6]^3))^2, {q, 0, n}]; a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q^3]^6 / EllipticTheta[ 4, 0, q]^2, {q, 0, n}]; a[ n_] := If[ n < 1, Boole[ n == 0], 4 Sum[ {1, 1, 4/3, 1, 1, 0}[[ Mod[d, 6, 1]]] d, {d, Divisors[n]}]]; a[ n_] := If[ n < 1, Boole[ n == 0], 4 Sum[ {1, 1, 2, 1, 1, -6}[[ Mod[d, 6, 1]]] n/d, {d, Divisors[n]}]];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A)^6 / (eta(x + A)^2 * eta(x^6 + A)^3))^2, n))};
-
Sage
A = ModularForms( Gamma0(6), 2, prec=50) . basis(); A[0] + 4*A[1] + 12*A[2];
Formula
Expansion of (a(q) + 2*a(q^2))^2 / 9 in powers of q where a(q) is a cubic AGM theta function.
Expansion of c(q)^4 / (3 * c(q^2))^2 in powers of q where c(q) is a cubic AGM theta function.
Expansion of (eta(q^2) * eta(q^3)^6 / (eta(q)^2 * eta(q^6)^3))^2 in powers of q.
Euler transform of period 6 sequence [4, 2, -8, 2, 4, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (16/3) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A227229.
Convolution square of A123330.
Comments