A227229 Expansion of (psi(q)^3 / psi(q^3))^2 in powers of q where psi() is a Ramanujan theta function.
1, 6, 15, 24, 33, 36, 33, 48, 69, 78, 90, 72, 51, 84, 120, 144, 141, 108, 87, 120, 198, 192, 180, 144, 87, 186, 210, 240, 264, 180, 198, 192, 285, 288, 270, 288, 105, 228, 300, 336, 414, 252, 264, 264, 396, 468, 360, 288, 159, 342, 465, 432, 462, 324, 249
Offset: 0
Keywords
Examples
G.f. = 1 + 6*q + 15*q^2 + 24*q^3 + 33*q^4 + 36*q^5 + 33*q^6 + 48*q^7 + 69*q^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- K. S. Williams, Fourier series of a class of eta quotients, Int. J. Number Theory 8 (2012), no. 4, 993-1004.
Programs
-
Magma
A := Basis( ModularForms( Gamma0(6), 2), 50); A[1] + 6*A[2] + 15*A[3];
-
Mathematica
a[ n_] := SeriesCoefficient[ (QPochhammer[ q^3] QPochhammer[ q^2]^6 / (QPochhammer[q]^3 QPochhammer[q^6]^2))^2, {q, 0, n}]; a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q]^6 / EllipticTheta[ 2, 0, q^3]^2/16, {q, 0, 2 n}]; a[ n_] := If[ n < 1, Boole[ n == 0], 3 Sum[ {2, 3/2, 2, 3/2, 2, 0}[[ Mod[d, 6, 1]]] d, {d, Divisors[n]}]]; a[ n_] := If[ n < 1, Boole[ n == 0], 3 Sum[ {2, 1, 2, 1, 2, -8}[[ Mod[d, 6, 1]]] n/d, {d, Divisors[n]}]];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^6 * eta(x^3 + A) / (eta(x + A)^3 * eta(x^6 + A)^2))^2, n))};
-
Sage
A = ModularForms( Gamma0(6), 2, prec=50) . basis(); A[0] + 6*A[1] + 15*A[2];
Formula
Expansion of (a(q) + a(q^2))^2 / 4 in powers of q where a() is a cubic AGM theta function.
Expansion of (b(q^2)^2 / b(q))^2 in powers of q where b() is a cubic AGM theta function.
Expansion of (eta(q^3) * eta(q^2)^6 / (eta(q)^3 * eta(q^6)^2))^2 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (27/4) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A227226.
Convolution square of A107760.
Euler transform of period 6 sequence [6, -6, 4, -6, 6, -4, ...].
Comments